Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence, UV/VIS

The Instrumental Criteria Sub-committee of the Analytical Methods Committee has been active for many years in producing Guidelines for the Evaluation of Analytical Instrumentation. Since 1984, they have produced reports on atomic absorption, ICP, X-ray spectrometers, GLC, HPLC, ICP-MS, molecular fluorescence, UV-Vis-NIR, IR and CE. These are excellent source documents to facilitate the equipment qualification process. A current listing of these publications is given in Section 10.2. [Pg.22]

Martin CB, Shi X, Tsao M-L, Karweik D, Brooke J, Hadad CM, Platz MS. (2002) The photochemistry of riboflavin tetraacetate and nucleosides. A study using density functional theory, laser flash photolysis, fluorescence, UV-Vis and time resolved infrared spectroscopy. J Phys Chem B 106 10263-10271. [Pg.226]

PTFE 30(F325 K 0 2-0.6 nm/s high vacuum 5 nm parallel, oriented along PTFE strands fluorescence. UV-Vis absorption... [Pg.689]

Keywords Molecular Sensors, Molecular recognition, Organometallic, Fluorescence, UV-vis spectroscopy. Colorimetry... [Pg.143]

On the other hand, spectroscopic detection methods, such as laser-induced fluorescence, UV/Vis absorption, chemiluminescence, and thermal lens microscopy, have been used for on-chip detection. Among these methods, the fluorescence detection method has been most widely used because of its high sensitivity and low detection limits for biologically relevant species. However, the fluorescence detection technique has some disadvantages. Many chemical... [Pg.174]

Microreactors have also been combined with fluorescence, Raman, X-ray, and NMR spectroscopy. A review pubhshed by Yue et al. (2012IE14583) provides an overview of the spectroscopic detection techniques, such as fluorescence, UV—vis, IR, Raman, X-ray, and NMR... [Pg.48]

Cr=crystal Sm=smectic CrSmB = crystal smectic B N=nematic Ch=cholesteric I=isotropic fluorescence = steady state fluorescence SPC = time-resolved single photon counting CPF=circularly polarized fluorescence UV-vis = UV-visible absorption spectrophotometry DSC=differential scanning calorimetry OM = optical microscopy XRD = X-ray diffraction EPR=electron paramagnetic resonance NMR=nuclear magnetic resonance. [Pg.909]

The sensitivities of particular spectroscopic teclmiques to specific chemical features are described more fully in tire next section. Perhaps tire most common and versatile probes of reaction dynamics are time-resolved UV-vis absorjDtion and fluorescence measurements. Wlren molecules contain cliromophores which change tlieir stmcture directly or experience a change of environment during a reaction, changes in absorjDtion or fluorescence spectra can be expected and may be used to monitor tire reaction dynamics. Altliough absorjDtion measurements are less sensitive tlian fluorescence measurements, tliey are more versatile in tliat one need not rely on a substantial fluorescence yield for tire reactants, products or intennediates to be studied. [Pg.2954]

Detectors Most of the detectors used in HPLC also find use in capillary electrophoresis. Among the more common detectors are those based on the absorption of UV/Vis radiation, fluorescence, conductivity, amperometry, and mass spectrometry. Whenever possible, detection is done on-column before the solutes elute from the capillary tube and additional band broadening occurs. [Pg.604]

Solutes that do not absorb UV/Vis radiation or undergo fluorescence can be detected by other detectors. Table 12.8 provides a list of detectors used in capillary electrophoresis along with some of their important characteristics. [Pg.604]

Electrodriven separation techniques are destined to be included in many future multidimensional systems, as CE is increasingly accepted in the analytical laboratory. The combination of LC and CE should become easier as vendors work towards providing enhanced microscale pumps, injectors, and detectors (18). Detection is often a problem in capillary techniques due to the short path length that is inherent in the capillary. The work by Jorgenson s group mainly involved fluorescence detection to overcome this limit in the sensitivity of detection, although UV-VIS would be less restrictive in the types of analytes detected. Increasingly sensitive detectors of many types will make the use of all kinds of capillary electrophoretic techniques more popular. [Pg.212]

Fig. 1. a) UV-Vis absorption and fluorescence emission spectra of riboflavin (RF, 20 pM) and Gum Arabic aqueous solutions at pH 7 (phosphate buffer 100 mM). b) Transient absorption spectra of RF (35 pM) in N2-saturated MeOH-Water (1 1) solution. The insets show the transient decay at 720 nm for the RF species and the Stern-Volmer plot for the quenching of 3RF by GA, eqn 11. [Pg.13]

Also bound to the UV-Vis spectral area is fluorescence spectrometry. It is most important with respect to those fluorescent food colorants that have been incorporated into food. In detail it helps to (1) identify a colorant by the spectral pattern of fluorescence excitation and emission spectra, (2) quantify its concentration by the fluorescence emission intensity, (3) qualify the enviromnent into which the colorant molecule is embedded, and (4) perform structural research on the food matter into which the colorant is incorporated. [Pg.13]

Peaks are analyzed separately by their retention times, absorption, and fluorescence properties. RCCs show absorbance maxima near A.500 and 316 nm. For FCCs, UV-Vis specna show two prominent bands near 361 and 320 mn and a luminescence maximum at 436 mn and NCCs show UV-Vis spectra with absorbance maxima near 320 and 210 nm. Nevertheless, as none of these approaches is suitable for elucidating structures, it is necessary to apply additional MS and NMR analyses to fully characterize snuctural features. Electron spray ionization (ESI) and high-resolution EAB mass spectroscopy have been applied to elucidate the molecular formulae of colorless compounds. ... [Pg.441]

Similarly to the methods used to characterize natural chlorophylls, RP-HPLC has been chosen by several authors to identify the individual components in Cn chlorophyllin preparations and in foods. The same ODS columns, mobile phase and ion pairing or ion suppressing techniques coupled to online photodiode UV-Vis and/or fluorescence detectors have been used. ° ... [Pg.443]

A molecular probe with dual output signals offers two detection modes allowing use of the same probe in different environments. We have demonstrated how an AB2 self-immolative dendron with double quinone methide release mechanism can be applied to create a molecular probe with UV-Vis and fluorescence modes for the detection of a specific catalytic activity.15 The molecular probe is illustrated in Fig. 5.36. The central unit of the probe (the molecular adaptor) is linked to an enzymatic substrate that acts as a trigger and to two different reporter molecules. Cleavage of the enzymatic substrate triggers the release of the two reporters and a consequent activation of their signals. [Pg.151]

FIGURE 5.37 Chemical structure of a molecular probe with UV-Vis and fluorescence outputs for penicillin G amidase activity. The phenylacetamide group (red) is a substrate for PGA. The reporter units, 4-nitrophenol and 6-aminoquinoline, provide a visible signal and a fluorescence signal, respectively, upon release. (See the color version of this figure in Color Plates section.)... [Pg.152]


See other pages where Fluorescence, UV/VIS is mentioned: [Pg.124]    [Pg.3615]    [Pg.82]    [Pg.913]    [Pg.124]    [Pg.3615]    [Pg.82]    [Pg.913]    [Pg.2116]    [Pg.442]    [Pg.447]    [Pg.584]    [Pg.585]    [Pg.586]    [Pg.397]    [Pg.397]    [Pg.316]    [Pg.28]    [Pg.207]    [Pg.420]    [Pg.356]    [Pg.5]    [Pg.153]    [Pg.157]    [Pg.22]    [Pg.69]    [Pg.512]    [Pg.474]    [Pg.331]    [Pg.825]    [Pg.218]    [Pg.228]    [Pg.233]    [Pg.242]    [Pg.152]    [Pg.154]   


SEARCH



UV fluorescence

UV-fluorescent

© 2024 chempedia.info