Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow controller tuning

A flow controller is installed on the feedstream to the reactor. Figure 6.49 shows that the action is reverse and the typical flow controller tuning constants are used (Kc = 0.5 and Tj = 0.3 min). Figure 6.50 shows the final flowsheet, the three controller faceplates, and the steady-state temperature profile. The setpoint of the peak temperature controller is 441 K, and the coolant temperature is 400 K. [Pg.328]

Schemes to control the outlet temperature of a process furnace by adjusting the fuel gas flow are shown in Figure 13. In the scheme without cascade control (Fig. 13a), if a disturbance has occurred in the fuel gas supply pressure, a disturbance occurs in the fuel gas flow rate, hence, in the energy transferred to the process fluid and eventually to the process fluid furnace outlet temperature. At that point, the outlet temperature controller senses the deviation from setpoint and adjusts the valve in the fuel gas line. In the meantime, other disturbances may have occurred in the fuel gas pressure, etc. In the cascade control strategy (Fig. 13b), when the fuel gas pressure is disturbed, it causes the fuel gas flow rate to be disturbed. The secondary controller, ie, the fuel gas flow controller, immediately senses the deviation and adjusts the valve in the fuel gas line to maintain the set fuel gas rate. If the fuel gas flow controller is well tuned, the furnace outlet temperature experiences only a small disturbance owing to a fuel gas supply pressure disturbance. Schemes to control the outlet temperature of a process furnace by adjusting the fuel gas flow are shown in Figure 13. In the scheme without cascade control (Fig. 13a), if a disturbance has occurred in the fuel gas supply pressure, a disturbance occurs in the fuel gas flow rate, hence, in the energy transferred to the process fluid and eventually to the process fluid furnace outlet temperature. At that point, the outlet temperature controller senses the deviation from setpoint and adjusts the valve in the fuel gas line. In the meantime, other disturbances may have occurred in the fuel gas pressure, etc. In the cascade control strategy (Fig. 13b), when the fuel gas pressure is disturbed, it causes the fuel gas flow rate to be disturbed. The secondary controller, ie, the fuel gas flow controller, immediately senses the deviation and adjusts the valve in the fuel gas line to maintain the set fuel gas rate. If the fuel gas flow controller is well tuned, the furnace outlet temperature experiences only a small disturbance owing to a fuel gas supply pressure disturbance.
Many misconceptions exist about cascade control loops and their purpose. For example, many engineers specify a level-flow cascade for every level control situation. However, if the level controller is tightly tuned, the out-flow bounces around as does the level, regardless of whether the level controller output goes direcdy to a valve or to the setpoint of a flow controller. The secondary controller does not, in itself, smooth the outflow. In fact, the flow controller may actually cause control difficulties because it adds another time constant to the primary control loop, makes the proper functioning of the primary control loop dependent on two process variables rather than one, and requites two properly tuned controllers rather than one to function properly. However, as pointed out previously, the flow controller compensates for the effect of the upstream and downstream pressure variations and, in that respect, improves the performance of the primary control loop. Therefore, such a level-flow cascade may often be justified, but not for the smoothing of out-flow. [Pg.70]

Adequate PC and its associated instrumentation are essential for product quality control. The goal in some cases is precise adherence to a single control point. In other cases, maintaining the temperature within a comparatively small range is all that is necessary. For effortless controller tuning and the lowest initial cost, the processor should select the simplest controller (of temperature, time, pressure, melt-flow, rate, etc.) that will produce the desired results. [Pg.531]

Figure 5.164. Tank temperature versus time for two values of Kc (1.5 and 2.0), with XI = 10000. The changes at T=10 and T=20 are programmed step changes in the inlet water flow rate. Oscillations and offset are caused by sub-optimal controller tuning. Figure 5.164. Tank temperature versus time for two values of Kc (1.5 and 2.0), with XI = 10000. The changes at T=10 and T=20 are programmed step changes in the inlet water flow rate. Oscillations and offset are caused by sub-optimal controller tuning.
When processes are subject only to slow and small perturbations, conventional feedback PID controllers usually are adequate with set points and instrument characteristics fine-tuned in the field. As an example, two modes of control of a heat exchange process are shown in Figure 3.8 where the objective is to maintain constant outlet temperature by exchanging process heat with a heat transfer medium. Part (a) has a feedback controller which goes into action when a deviation from the preset temperature occurs and attempts to restore the set point. Inevitably some oscillation of the outlet temperature will be generated that will persist for some time and may never die down if perturbations of the inlet condition occur often enough. In the operation of the feedforward control of part (b), the flow rate and temperature of the process input are continually signalled to a computer which then finds the flow rate of heat transfer medium required to maintain constant process outlet temperature and adjusts the flow control valve appropriately. Temperature oscillation amplitude and duration will be much less in this mode. [Pg.39]

A variety of control schemes are shown separately in Figures 3.14 and 3.15 for the lower and upper sections of fractionators. To some extent, these sections are controllable independently but not entirely so because the flows of mass and heat are interrelated by the conservation laws. In many of the schemes shown, the top reflux rate and the flow of HTM to the reboiler are on flow controls. These quantities are not arbitrary, of course, but are found by calculation from material and energy balances. Moreover, neither the data nor the calculation method are entirely exact, so that some adjustments of these flow rates must be made in the field until the best possible performance is obtained from the equipment. In modern large or especially sensitive operations, the fine tuning is done by computer. [Pg.48]

Figures 7. Simulated start-up of vinyl acetate polymerization at low emulsifier level (0.01 mol/L H20) under closed-loop control with arbitrarily selected controller tuning constants and manipulation of initiator flow rate at 50°C conversion in R1—STD feedback (--------------------------) vs. DTC (----)... Figures 7. Simulated start-up of vinyl acetate polymerization at low emulsifier level (0.01 mol/L H20) under closed-loop control with arbitrarily selected controller tuning constants and manipulation of initiator flow rate at 50°C conversion in R1—STD feedback (--------------------------) vs. DTC (----)...
As a practical measure, flow control devices should be incorporated into the die design to permit fine-tuning of the die passage shape to ensure a proper flow balance. In addition, the design of extrusion dies is complicated by two unique material properties of molten plastics ... [Pg.633]


See other pages where Flow controller tuning is mentioned: [Pg.156]    [Pg.365]    [Pg.156]    [Pg.365]    [Pg.790]    [Pg.231]    [Pg.556]    [Pg.686]    [Pg.73]    [Pg.83]    [Pg.179]    [Pg.425]    [Pg.259]    [Pg.55]    [Pg.105]    [Pg.201]    [Pg.73]    [Pg.83]    [Pg.614]    [Pg.39]    [Pg.39]    [Pg.377]    [Pg.727]    [Pg.948]    [Pg.958]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Control tuning

Flow control

Flow control tuning

Flow controllers

Tuning

© 2024 chempedia.info