Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Flash Specifications

It is possible to calculate the properties of wider cuts given the characteristics of the smaller fractions when these properties are additive in volume, weight or moles. Only the specific gravity, vapor pressure, sulfur content, and aromatics content give this advantage. All others, such as viscosity, flash point, pour point, need to be measured. In this case it is preferable to proceed with a TBP distillation of the wider cuts that correspond with those in an actual refinery whose properties have been measured. [Pg.331]

There is no entirely satisfactory way of measuring flow. In the BS 2782 flow cup test an amount of moulding powder is added to the mould to provide between 2 and 2.5 g of flash. The press is closed at a fixed initial rate and at a fixed temperature and pressure. The time between the onset of recorded pressure and the cessation of flash (i.e. the time at which the mould has closed) is noted. This time is thus the time required to move a given mass of material a fixed distance and is thus a measure of viscosity. It is not a measure of the time available for flow. This property, or rather the more important length of flow or extent of flow, must be measured by some other device such as the flow disc or by the Rossi-Peakes flow test, neither of which are entirely satisfactory. Cup flow times are normally of the order of 10-25 seconds if measured by the BS specification. Moulding powders are frequently classified as being of stiff flow if the cup flow time exceeds 20 seconds, medium flow for times of 13-19 seconds and soft flow or free flow if under 12 seconds. [Pg.650]

Other important properties include Hash point, volatility, viscosity, specific gravity, cloud point, pour point, and smoke point. Most of these properties are related directly to the boiling range of the kerosene and are not independently variable. The flash point, an index of fire hazard, measures the readiness of a fuel to ignite when exposed to a flame. It is usually mandated by law or government regulation to be 120° or 130° F (48° or 72° C), Volatility, as measured... [Pg.689]

There are many hundreds of raw material amines commercially available, and a wide variety are used for water treatment applications. They typically have low flash points and are therefore normally dissolved in water down to 20 to 40% strength, to minimize fire risks and permit blending. Additionally, each material has its own specific functional profile covering molecular weight, solubility, volatility, DR, basicity, thermal stability, and other parameters. The standard water treatment amines have all been known and used for 30 to 40 years or more. [Pg.517]

The curves of Fig. 10.7 apply only to fuseheads made to the same specification. If fuseheads are made with different bridgewires or different flashing dips, the corresponding curves could be completely different and there may be no point at which the minimum lag time of one type of detonator exceeds the maximum excitation time of the other. Under these conditions series firing would not be practicable and it follows that it is not feasible to use different types of detonators in a single series firing circuit. [Pg.114]

In optimization using a modular process simulator, certain restrictions apply on the choice of decision variables. For example, if the location of column feeds, draws, and heat exchangers are selected as decision variables, the rate or heat duty cannot also be selected. For an isothermal flash both the temperatures and pressure may be optimized, but for an adiabatic flash, on the other hand, the temperature is calculated in a module and only the pressure can be optimized. You also have to take care that the decision (optimization) variables in one unit are not varied by another unit. In some instances, you can make alternative specifications of the decision variables that result in the same optimal solution, but require substantially different computation time. For example, the simplest specification for a splitter would be a molar rate or ratio. A specification of the weight rate of a component in an exit flow stream from the splitter increases the computation time but yields the same solution. [Pg.523]


See other pages where Other Flash Specifications is mentioned: [Pg.1239]    [Pg.1264]    [Pg.16]    [Pg.1087]    [Pg.178]    [Pg.1435]    [Pg.1450]    [Pg.585]    [Pg.1432]    [Pg.1447]    [Pg.157]    [Pg.1243]    [Pg.1268]    [Pg.339]    [Pg.293]    [Pg.245]    [Pg.66]    [Pg.155]    [Pg.316]    [Pg.242]    [Pg.410]    [Pg.430]    [Pg.787]    [Pg.172]    [Pg.540]    [Pg.454]    [Pg.152]    [Pg.499]    [Pg.184]    [Pg.505]    [Pg.212]    [Pg.238]    [Pg.445]    [Pg.141]    [Pg.257]    [Pg.15]    [Pg.290]    [Pg.306]    [Pg.783]    [Pg.155]    [Pg.169]    [Pg.18]    [Pg.210]    [Pg.316]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Other Specifications

© 2024 chempedia.info