Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flash photolysis time resolution

The use of well collimated and high intensity synchrotron radiation beams is essential to reach the necessary time intervals without losing the statistical significance in the observed diffracted intensities. The white beam Laue technique has already been proven to facilitate studies down to the picosecond time regime for studies such as recombination of CO in myoglobin after flash photolysis. Nanosecond resolution has been obtained in a study of laserannealing of defects in a silicon crystal. [Pg.95]

Many experimental methods may be distinguished by whether and how they achieve time resolution—directly or indirectly. Indirect methods avoid the requirement for fast detection methods, either by detemiining relative rates from product yields or by transfonuing from the time axis to another coordinate, for example the distance or flow rate in flow tubes. Direct methods include (laser-) flash photolysis [27], pulse radiolysis [28]... [Pg.2115]

The time resolution of these methods is detennined by the time it takes to mitiate the reaction, for example the mixing time in flow tubes or the laser pulse width in flash photolysis, and by the time resolution of the detection. Relatively... [Pg.2116]

Figure B2.5.11. Schematic set-up of laser-flash photolysis for detecting reaction products with uncertainty-limited energy and time resolution. The excitation CO2 laser pulse LP (broken line) enters the cell from the left, the tunable cw laser beam CW-L (frill line) from the right. A filter cell FZ protects the detector D, which detennines the time-dependent absorbance, from scattered CO2 laser light. The pyroelectric detector PY measures the energy of the CO2 laser pulse and the photon drag detector PD its temporal profile. A complete description can be found in [109]. Figure B2.5.11. Schematic set-up of laser-flash photolysis for detecting reaction products with uncertainty-limited energy and time resolution. The excitation CO2 laser pulse LP (broken line) enters the cell from the left, the tunable cw laser beam CW-L (frill line) from the right. A filter cell FZ protects the detector D, which detennines the time-dependent absorbance, from scattered CO2 laser light. The pyroelectric detector PY measures the energy of the CO2 laser pulse and the photon drag detector PD its temporal profile. A complete description can be found in [109].
The flash lamp teclmology first used to photolyse samples has since been superseded by successive generations of increasingly faster pulsed laser teclmologies, leading to a time resolution for optical perturbation metliods tliat now extends to femtoseconds. This time scale approaches tlie ultimate limit on time resolution (At) available to flash photolysis studies, tlie limit imposed by chemical bond energies (AA) tlirough tlie uncertainty principle, AAAt > 2/j. [Pg.2946]

Some ingenious experimental innovations have now made it possible to conduct flash photolysis on time scales < 10-11 s. They are anything but routine, especially as they approach a resolution of some femtoseconds, which is the approximate current state of the art. The implementation of these methods allows the study of chemical and physical events on time scales approaching and even exceeding those of molecular vibrations. Indeed, it is studies of vibration, including ligand motion, and (especially) electron transfer that have benefited most. [Pg.267]

Final resolution of these problems, particularly the complications from multiple matrix sites, came from investigations using spectroscopic methods with higher time resolution, viz. laser flash photolysis. Short laser pulse irradiation of diazofluorene (36) in cold organic glasses produced the corresponding fluorenylidene (37), which could be detected by UV/VIS spectroscopy. Now, in contrast to the results from EPR spectroscopy, single exponential decays of the carbene could be observed in matrices... [Pg.437]

The formation of 7a was also observed in solution using laser flash photolysis (LFP) with nanosecond time resolution.25,26 In Freon-113 7a shows an absorption maximum at 470 nm, and a life-time of longer than 20 xs.25 The rate of 2.9 x 109 M 1 s-1 for this reaction is almost the diffusion limit and implies a very small or absent barrier. In aqueous solution the rate constant for the reaction of la with 3Oj is 3.5 x 109 M-1 s-1, and the absorption maximum of 7a was determined as 460 nm.26 This clearly demonstrates that the oxidation of carbene la in solid argon and in solution follows the same reaction pathway. [Pg.176]

Laser flash photolysis experiments48,51 are based on the formation of an excited state by a laser pulse. Time resolutions as short as picoseconds have been achieved, but with respect to studies on the dynamics of supramolecular systems most studies used systems with nanosecond resolution. Laser irradiation is orthogonal to the monitoring beam used to measure the absorption of the sample before and after the laser pulse, leading to measurements of absorbance differences (AA) vs. time. Most laser flash photolysis systems are suitable to measure lifetimes up to hundreds of microseconds. Longer lifetimes are in general not accessible because of instabilities in the lamp of the monitoring beam and the fact that the detection system has been optimized for nanosecond experiments. [Pg.176]

An important development for detection of transient organometallic species is fast time-resolved infrared. The transient is generated rapidly by uv-visible flash photolysis and monitored by ir with ps resolution. Spectra are obtained from a series of kinetic traces recorded at about 4 cm interval. [Pg.179]

Flash photolysis techniques are described, the reaction products being observed in both emission and absorption with resolution times of about a ftsec. Some results with C2H2—O mixts photo sensitized with NO2 are given... [Pg.245]

There have been a number of studies of magnetic fields upon radical recombination using steady-state techniques of photolysis or pyrolysis. They have variously found large or small effects, which are not always consistent with the theoretical predictions [304—306]. However, using laser flash photolysis techniques to provide fast time resolution, Turro et al. [307] followed the combination of benzyl radicals within hexadecyltrimethyl ammonium chloride micelles in water. The combination occurs over times < 100 ns. A magnetic field of 0.04 T reduces the rate of recombination by almost a factor of two. Such a magnetic field... [Pg.147]

The time involved in mixing places a limit on the dead time of flow techniques. The only way to increase the time resolution is to cut out the mixing by using a premixed solution of reagents that can be perturbed in some way to allow a measurable reaction to occur. A classic method from physical chemistry is flash photolysis, in which a particular bond in a reagent is cleaved by a pulse of light so that reactive intermediates are formed. This method was introduced in 1959... [Pg.79]

Time-resolved spectra can be obtained by laser flash photolysis or by single photon counting. Both these techniques will yield point-by-point spectra, so the wavelength resolution must be defined to fit the experiment. [Pg.249]

The pulse radiolysis method has been described in detail in some of the early papers (22, 22), in a brief review of the subject (23), and in a current comprehensive review (14). It is, in brief, a fast reaction method in which the external perturbation applied to the system is a microsecond pulse of electrons. The current is sufficiently high to produce an instantaneous concentration of transient species high enough to be observed by fast measurement of the optical absorption. Spectra may be recorded either photographically or spectrophotometrically. The kinetics are studied by fast spectrophotometry. Since a perturbing pulse as short as 0.4 /xsec. has been used, the time resolution has approached 10-7 sec. The flash photolysis method used in some of the other studies (27, 15) has been reviewed in detail (24). [Pg.43]

Flash photolysis is a powerful technique for investigating the kinetics of conversion of the various forms of flavylium ions. 47cI Even with a simple flash-photolysis apparatus, with a time resolution of approximately 0.2 s, it is possible to obtain kinetic data that can complement and/or replace those obtainable by the pH-jump technique. [Pg.317]

The high value for the quenching of 3,4-dimethoxyacetophenone by phenol suggests that it is probable that within the lignin structure hydroxyl groups are able to quench carbonyls by a static mechanism to yield phenoxy-ketyl radical pairs which decay on a timescales faster than the time resolution of our laser flash photolysis apparatus. Intersystem crossing rate constants for triplet radical pairs in the restricted environments of micelles have been demonstrated to be of the order of 2 -5 x 106 s-1 (25, 24). However, in the lignin matrix where diffusional processes are likely to be... [Pg.94]

The conventional flash photolysis setup to study photochemical reactions was drastically improved with the introduction of the pulsed laser in 1970 [17], Soon, nanosecond time resolution was achieved [13], However, the possibility to study processes faster than diffusion, happening in less than 10 10 s, was only attainable with picosecond spectroscopy. This technique has been applied since the 1980s as a routine method. There are reviews covering the special aspects of interest of their authors on this topic by Rentzepis [14a], Mataga [14b], Scaiano [18], and Peters [14c],... [Pg.221]

The analysis of similar processes with benzophenone (1) and benzil (7) requires a higher time resolution of the experimental setup. Using ns-laser flash photolysis, we observed the formation of radical ion intermediates, depending on solvent polarity, added salts and competing H-abstraction [36]. Summarizing all these experiments, one can draw the following conclusions (cf. Figs. 3—5, see also Ref. [33]) ... [Pg.225]

As has been shown by time-resolved flash photolysis measurements in colloidal titanium dioxide suspensions trapping is a very fast process. Rothenberger et al. performed picosecond and nanosecond transient absorption experiments on titanium dioxide and observed that the electron trapping time was faster than 30 ps, the time resolution of their laser system [4e]. The trapping time for holes was estimated to be < 250 ns. In a recent picosecond study by Serpone et al. on titanium dioxide colloids solutions of varying diameters it was observed that the spectra of trapped electrons as well as of trapped holes are fully developed after a laser... [Pg.186]


See other pages where Flash photolysis time resolution is mentioned: [Pg.124]    [Pg.1968]    [Pg.2116]    [Pg.295]    [Pg.160]    [Pg.125]    [Pg.196]    [Pg.183]    [Pg.382]    [Pg.146]    [Pg.145]    [Pg.338]    [Pg.20]    [Pg.89]    [Pg.392]    [Pg.848]    [Pg.848]    [Pg.10]    [Pg.893]    [Pg.256]    [Pg.902]    [Pg.5]    [Pg.7]    [Pg.327]    [Pg.342]    [Pg.266]    [Pg.101]    [Pg.141]    [Pg.6]    [Pg.90]    [Pg.184]   


SEARCH



Flash photolysis

© 2024 chempedia.info