Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flame ionization detection chlorinated compounds

In this manner, a nearly universal and very nonselective detector is created that is a compromise between widespread response and high selectivity. For example, the photoionization detector (PID) can detect part-per-billion levels of benzene but cannot detect methane. Conversely, the flame ionization detector (FID) can detect part-per-billion levels of methane but does not detect chlorinated compounds like CCl very effectively. By combining the filament and electrochemical sensor, all of these chemicals can be detected but only at part-per-million levels and above. Because most chemical vapors have toxic exposure limits above 1 ppm (a few such as hydrazines have limits below 1 ppm), this sensitivity is adequate for the initial applications. Several cases of electrochemical sensors being used at the sub-part-per-million level have been reported (3, 16). The filament and electrochemical sensor form the basic gas sensor required for detecting a wide variety of chemicals in air, but with little or no selectivity. The next step is to use an array of such sensors in a variety of ways (modes) to obtain the information required to perform the qualitative analysis of an unknown airborne chemical. [Pg.303]

GC is coupled with many detectors for the analysis of pesticides in wastewater. At the present time the most popular is GC-MS, which will be discussed in more detail later in this section. The flame ionization detector (FID) is another nonselective detector that identifies compounds containing carbon but does not give specific information on chemical structure (but is often used for quantification because of the linear response and sensitivity). Other detectors are specific and only detect certain species or groups of pesticides. They include electron capture,nitrogen-phosphorus, thermionic specific, and flame photometric detectors. The electron capture detector (ECD) is very sensitive to chlorinated organic pesticides, such as the organochlorine compounds (OCs, DDT, dieldrin, etc.). It has a long history of use in many environmental methods,... [Pg.59]

Many detectors have been used to detect pesticides and herbicides in SFC. Among these detectors, the flame ionization detector (FID) is most commonly used for detection of a wide range of pesticides and herbicides, with a detection limit ranging from 1 ppm (for carbonfuran) to 80 ppm (for Karmex, Harmony, Glean, and Oust herbicides). The UV detector has frequently been used for the detection of compounds with chromophores. The detection limit was as low as 10 ppt when solid-phase extraction (SPE) was on-line coupled to SFC. The mass spectrometric detector (MSD) has also been used in many applications as a universal detector. The MSD detection limit reached 10 ppb with on-line SFE (supercritical fluid extraction)-SFC. Selective detection of chlorinated pesticides and herbicides has been achieved by an electron-capture detector (ECD). The limit of detection for triazole fungicide metabolite was reported to be 35 ppb. Other detectors used for detection of pesticides and herbicides include thermoionic, infrared, photometric, and atomic emission detectors. [Pg.641]


See other pages where Flame ionization detection chlorinated compounds is mentioned: [Pg.316]    [Pg.155]    [Pg.276]    [Pg.328]    [Pg.5028]    [Pg.5029]    [Pg.5]    [Pg.38]    [Pg.100]    [Pg.37]    [Pg.91]    [Pg.112]    [Pg.290]    [Pg.141]    [Pg.933]    [Pg.239]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Chlorinated compounds

Chlorine detection

Flame compounds

Flame ionization

Flame ionization detection

Ionizable compounds

© 2024 chempedia.info