Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Five-membered enol ether

Examples of the preparation of cyclopropanes by intramolecular nucleophilic substitution are illustrated in Scheme9.17. The first example is a synthesis of [l.l.ljpro-pellane, which yields the product in acceptable yields, despite the high strain and poor stability of this compound [66]. The second and third examples illustrate the remarkable ease with which 3-halopropyl ketones cyclize to yield cyclopropanes instead of cyclic, five-membered enol ethers or ketones. Similarly, carbamates of 2-haloethylglycine esters do not undergo intramolecular N- or O-alkylation on treatment with bases, but yield cyclopropanes instead [67, 68]. Some nucleophiles can undergo Michael addition to 3-halomethyl acrylates faster than direct Sn2 reaction, to yield cyclopropanes by cyclization of the intermediate enolates (fourth example, Scheme9.17) [69]. [Pg.323]

Reductive cyclization of chromium-carbene complexes that contain a triple bond in the carbon chain leads to bicyclic butenolides. Five- and seven-membered enol ethers are assembled when conjugated carbene complexes react with lithium enolates and dienolates, respectively ... [Pg.137]

The silyl enol ethers 209 and 212 are considered to be sources of carbanions. and their transmetallation with Pd(OAc)2 forms the Pd enolate 210. or o.w-tt-allylpalladium, which undergoes the intramolecular alkene insertion and. 1-elimination to give 3-methylcyclopentenone (211) and a bicyclic system 213[199], Five- and six-membered rings can be prepared by this reaction[200]. Use of benzoquinone makes the reaction catalytic. The reaction has been used for syntheses of skeletons of natural products, such as the phyllocladine intermediate 214[201], capnellene[202], the stemodin intermediate 215[203] and hir-sutene [204]. [Pg.49]

Schemes 3-7 describe the synthesis of cyanobromide 6, the A-D sector of vitamin Bi2. The synthesis commences with an alkylation of the magnesium salt of methoxydimethylindole 28 to give intermediate 29 (see Scheme 3a). The stereocenter created in this step plays a central role in directing the stereochemical course of the next reaction. Thus, exposure of 29 to methanol in the presence of BF3 and HgO results in the formation of tricyclic ketone 22 presumably through the intermediacy of the derived methyl enol ether 30. It is instructive to point out that the five-membered nitrogen-containing ring in 22, with its two adjacent methyl-bearing stereocenters, is destined to become ring A of vitamin Bi2. A classical resolution of racemic 22 with a-phenylethylisocyanate (31) furnishes tricyclic ketone 22 in enantiomerically pure form via diaster-eomer 32. Schemes 3-7 describe the synthesis of cyanobromide 6, the A-D sector of vitamin Bi2. The synthesis commences with an alkylation of the magnesium salt of methoxydimethylindole 28 to give intermediate 29 (see Scheme 3a). The stereocenter created in this step plays a central role in directing the stereochemical course of the next reaction. Thus, exposure of 29 to methanol in the presence of BF3 and HgO results in the formation of tricyclic ketone 22 presumably through the intermediacy of the derived methyl enol ether 30. It is instructive to point out that the five-membered nitrogen-containing ring in 22, with its two adjacent methyl-bearing stereocenters, is destined to become ring A of vitamin Bi2. A classical resolution of racemic 22 with a-phenylethylisocyanate (31) furnishes tricyclic ketone 22 in enantiomerically pure form via diaster-eomer 32.
Reactions of 1 with epoxides involve some cycloaddition products, and thus will be treated here. Such reactions are quite complicated and have been studied in some depth.84,92 With cyclohexene oxide, 1 yields the disilaoxirane 48, cyclohexene, and the silyl enol ether 56 (Eq. 29). With ( )- and (Z)-stilbene oxides (Eq. 30) the products include 48, ( > and (Z)-stilbenes, the E- and Z-isomers of silyl enol ether 57, and only one (trans) stereoisomer of the five-membered ring compound 58. The products have been rationalized in terms of the mechanism detailed in Scheme 14, involving a ring-opened zwitterionic intermediate, allowing for carbon-carbon bond rotation and the observed stereochemistry. [Pg.262]

The Alder-ene cyclization of allylic silyl ethers represents a clever use of cycloisomerization chemistry, as the enol ether products can be easily unmasked to yield aldehydes. Palladium-catalyzed cycloisomerization of 1,6- and 1,7-enynes containing an allylic oxygen most often gives rise to 1,3-dienes (see Section 10.12.4.1). However, enynes of type 63 underwent facile Alder-ene cyclization to the corresponding five- or six-membered rings (Equation (40)) using both [CpRu(MeCN)3]PF6 41 and the Cp analog ([Cp Ru(MeCN)3]PF6, 64).53... [Pg.573]

Palladium-catalyzed bis-silylation of a,/ -unsaturated ketones using bis(disilanyl)dithiane affords seven-membered ring silyl enol ethers in high yields via 1,4-addition (Equation (48)).8,97 Application of this reaction to a,/ -unsaturated esters and nitriles gives five-membered ring 1,2-addition products in good yields (Equation (49)). [Pg.746]

In addition to the former example, Pandey et al. achieved efficient a-aryla-tion of ketones by the reaction of silyl enol ethers with arene radical cations generated by photoinduced electron transfer from 1,4-dicyanonaphthalene. Using this strategy various five-, six-, seven-, and eight-membered benzannulated compounds are accessible in yields in the range 60-70% [39],... [Pg.202]

Intermolecular coupling of a vinyl ether with styrene at a carbon anode in methanol is successful, giving a mixture of the cross coupled product and the two homocoupled products [49], Intramolecular coupling between an enol ether and an alkene centre, as in 24 and 25, proceeds to give the cyclized product in good yield [50], Five and six membered rings can be constructed in this way. An easily oxidised vinyl ether group is necessary to initiate the reaction and the second alkene... [Pg.41]

This reaction in the presence of base was applied to a tandem cyclization. When bis-alkynyl silyl enol ether 93a was irradiated in toluene in the presence of 10 mol % W(CO)6 and DABCO with 1 equiv of H2O, the expected tricyclic ketone 94a was obtained in 80% yield. The five-membered substrate 93b also gave the corresponding tricyclic ketone 94b having the basic carbon skeleton of the cedranes. Thus we can prepare synthetically useful tricyclic compounds utilizing this W (CO)5(L)-catalyzed tandem cyclization in the presence of DABCO [25c] (Scheme 5.29). [Pg.177]

A very useful class of chiral auxiliaries has been developed for alkenes substituted with a heteroatom. These auxiliaries, attached to the heteroatom, allow for the preparation of enantiomerically enriched cyclopropanols, cyclopropylamines and cyclopropylboronic acids. Tai and coworkers have developed a method to efficiently generate substituted cyclopropanol derivatives using the cyclopropanation of a chiral enol ether (equation 78) . The reaction proceeds with very high diastereocontrol with five- to eight-membered ring sizes as well as with acyclic enol ethers. The potential problem with the latter is the control of the double bond geometry upon enol ether formation. A detailed mechanistic study involving two zinc centers in the transition structure has been reported. ... [Pg.271]

The same SN2 addition is also observed in reactions of the cuprate with the silyl enol ether or the enol phosphate of the epoxy ketone. This regiosclectivity is applicable to five- and six-membered ring systems and, to a lesser extent, to acyclic systems, which are generally less reactive. [Pg.283]

The formation and the hydrolysis of acyclic and cyclic acetals have been studied in rather great detail [91]. Several reviews on this topic are available [92] and some comments have been made [13] concerning the carbohydrate series. We have shown in Schemes 1,2, and 3 that a common feature of this reaction seems to be the intermediacy of an oxocarbenium ion. However, the cyclization of such an intermediate has been questioned more recently [93] in the light of the Baldwin s rules for ring closure [94]. At least for the five-membered ring, an SN2-type displacement mechanism far the protonated form (B) of die hemiacetal (A) (favorable 5-exo-tet cyclization) has been proposed rather than the unfavorable 5-endo-trig cyclization of the oxocarbenium ion (C) (Scheme 5). Except when the formation of the enol ether (D) is structurally impossible, the intermediacy of such a compound remains feasible. [Pg.12]

Co2(CO)8-catalyzed reactions of benzylic acetates with trimethylsilane and CO proceed under mild reaction conditions to give trimethylsilylethers of /3-phenethylalcohol in 43-76% yield. The highest yields are observed for benzyl acetates with electron-donating substituents.111 Secondary alkyl acetates are also good substrates in the reaction system, yielding enol silyl ethers.112 In addition, the cobalt complex is an effective catalyst for siloxymethylation of five-membered cyclic ortho esters, as shown in Eq. (41).113... [Pg.234]

A versatile strategy for efficient intramolecular oc-arylation of ketones was achieved by the reaction of silyle enol ethers with PET-generated arene radical cations. This strategy involved one-electron transfer from the excited methoxy-substituted arenes to ground-state DCN [42]. Pandey et al. reported the construction of five- to eight-membered benzannulated as well as benzospiroannulated compounds using this approach (Sch. 20) [42a]. The course of the reaction can be controlled via the silyl enol ether obtained... [Pg.280]


See other pages where Five-membered enol ether is mentioned: [Pg.229]    [Pg.229]    [Pg.34]    [Pg.46]    [Pg.223]    [Pg.452]    [Pg.28]    [Pg.210]    [Pg.42]    [Pg.867]    [Pg.61]    [Pg.120]    [Pg.326]    [Pg.492]    [Pg.349]    [Pg.77]    [Pg.78]    [Pg.79]    [Pg.79]    [Pg.82]    [Pg.38]    [Pg.52]    [Pg.165]    [Pg.288]    [Pg.23]    [Pg.305]    [Pg.46]    [Pg.183]    [Pg.633]    [Pg.840]    [Pg.905]    [Pg.462]    [Pg.1063]    [Pg.352]    [Pg.408]   
See also in sourсe #XX -- [ Pg.229 ]




SEARCH



© 2024 chempedia.info