Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filler nanofiller

Recentiy, a new class of organic-inorganic hybrid materials based on the ultra incorporation of nano-sized fillers (nanofillers) into a polymer matrix has been investigated. Nanotechnology is the aptitude to work on a scale of about 1-100 nm in order to understand, create, characterize and use material structure, devices, and system with unique properties derived from their base on the nanostructures. Nanocomposites could exhibit exclusive modifications in their properties, compared with conventional composites in terms of physical properties, including gas barrier, flammability resistance, thermal and environmental stability, solvent uptake, and rate of biodegradability of biodegradable (Chivrac et al. 2009). [Pg.303]

Very often the elasticity modulus (or reinforcement degree) of polymer composites (nanocomposites) is described within the frameworks of numerous micromechanical models, which proceed from elasticity modulus of matrix polymer and filler (nanofiller) and the latter volume contents [10]. Additionally it is supposed, that the indicated above characteristics of a filler are approximately equal to the corresponding parameters of compact material, fi om which a filler is prepared. This practice is inapplicable absolutely in case of polymer nanocomposites with fine-grained nanofiller, since in this case a polymer is reinforced by nanofiller fractal aggregates, whose elasticity modulus and density differ essentially from compact material characteristics (see the Eq. (10.3)) [5, 9]. Therefore, the microcomposites models application, as a rule. [Pg.387]

Effects of nanoclay and silica in mbber matrices have been discussed in earlier chapters. Recently, several other nanofillers have been investigated and have shown a lot of promise. All these fillers have not been investigated on rubbers extensively, although they have great potential to do so in the days to come. In this chapter, we have compiled the current research on mbber nanocomposites having nanofillers other than nanoclay and nanosilica. Further, this chapter provides a snapshot of the current experimental and theoretical tools being used to advance our understanding of mbber nanocomposites. [Pg.89]

Reinforcement of polymer matrices using various types of nanofillers is being extensively studied nowadays. The reinforcement mechanisms as well as enhancement of properties are different with different types of fillers. This field is quite green and many more developments are yet to come to enrich our science and technology in the near future. [Pg.97]

D-TEM gave 3D images of nano-filler dispersion in NR, which clearly indicated aggregates and agglomerates of carbon black leading to a kind of network structure in NR vulcanizates. That is, filled rubbers may have double networks, one of rubber by covalent bonding and the other of nanofiller by physical interaction. The revealed 3D network structure was in conformity with many physical properties, e.g., percolation behavior of electron conductivity. [Pg.544]

In order to support and meet this demand, an all-around development has taken place on the material front too, be it an elastomer new-generation nanofiller, surface-modified or plasma-treated filler reinforcing materials like aramid, polyethylene naphthenate (PEN), and carbonfiber nitrosoamine-free vulcanization and vulcanizing agents antioxidants and antiozonents series of post-vulcanization stabUizers environment-friendly process oil, etc. [Pg.920]

Filler Carbon black Natural amorphous silica, precipitated silica, nonblack nanofiller Solvent Organic solvent Aqua-based solvent... [Pg.1024]

The authors [1] studied kinetics of poly (amic acid) (PAA) solid-state imidization both in the presence of nanofiller (layered silicate Na+-montmorillonite) and without it. It was found, that temperature imidization 1] raising in range 423-523 K and nanofiller contents Wc increase in range 0-7 phr result to essential imidization kinetics changes expressed by two aspects by essential increase of reaction rate (reaction rate constant of first order k increases about on two order) and by raising of conversion (imidization) limiting degree Q im from about 0,25 for imidization reaction without filler at 7 i=423 K up to 1,0 at Na -montmorillonite content 7... [Pg.217]

The kinetics of PAA, synthesized from 4,4 -oxydianiline and pyromellitic dianhydride, solid-state imidization both in filler absence and with addition of 2 phr Na+-montmorillonite was studied [1], The nanofiller was treated by solution of P-phenylenediamine in HC1 and then washed by de-ionized water to ensure a complete removal of chloride ions. The conversion (imidization) degree Q was determined as a function of reaction duration t with the aid of Fourier transformation of IR-spectra bands 726 and 1014 cm 1. The samples for FTIR study were obtained by spin-coating of PAA/Na+-montmorillonite mixture solution in N,N-dimethylacetamide on KBr disks, which then were dried in vacuum for 48 h at 303 K. It was shown, that the used in paper [1] method gives exfoliated nanocomposites. The other details of nanocomposites polyimid/Na+-montmorillonite synthesis and study in paper [1] were adduced. The solid-state imidization process was made at four temperatures 7) 423, 473, 503 and 523 K. [Pg.218]

In this simple form, this expression is a good first approximation to compare the experimental reinforcement achieved upon addition of filler to the matrix, to the theoretical prediction [11]. It provides a measure of how efficiently the properties of the nanofiller are exploited in the composite, but also enables the comparison with the level of reinforcement achieved using other fillers. Note, in addition, that equation (8.2) sets an upper limit between Efl5 = 200 GPa and / = 1000 GPa, depending on whether the nanocarbon is randomly or perfectly oriented (without taking q0 into account). [Pg.230]

Where a is the composite conductivity, a0 a proportionally coefficient, Vfc the percolation threshold and t an exponent that depends on the dimensionality of the system. For high aspect ratio nanofillers the percolation threshold is several orders of magnitude lower than for traditional fillers such as carbon black, and is in fact often lower than predictions using statistical percolation theory, this anomaly being usually attributed to flocculation [24] (Fig. 8.3). [Pg.232]

Mineral fillers and additives aluminium trihydrate (ATH), magnesium hydroxide and boron derivates are the best known but tin derivates, ammonium salts, molybdenum derivates and magnesium sulphate heptahydrate are used to varying extents and nanofillers are developing. [Pg.210]

Interfacial structure is known to be different from bulk structure, and in polymers filled with nanofillers possessing extremely high specific surface areas, most of the polymers is present near the interface, in spite of the small weight fraction of filler. This is one of the reasons why the nature of the reinforcement is different in nanocomposites and is manifested even at very low filler loadings (<10 wt%). Crucial parameters in determining the effect of fillers on the properties of composites are filler size, shape, aspect ratio, and filler-matrix interactions [2-5]. In the case of nanocomposites, the properties of the material are more tied to the interface. Thus, the control and manipulation of microstructural evolution is essential for the growth of a strong polymer-filler interface in such nanocomposites. [Pg.4]

The lowering of die swell values has a direct consequence on the improvement of processability. It is apparent that the processability improves with the incorporation of the unmodified and the modified nanofillers. Figure lOa-c show the SEM micrographs of the surface of the extrudates at a particular shear rate of 61.2 s 1 for the unfilled and the nanoclay-filled 23SBR systems. The surface smoothness increases on addition of the unmodified filler, and further improves with the incorporation of the modified filler. This has been again attributed to the improved rubber-clay interaction in the exfoliated nanocomposites. [Pg.24]

The formation of polymer-filler nanocomposite affects the thermal behavior of the matrix because the well-dispersed nanofillers lead to modification of the degradation pathways [165-168]. This concept was first introduced by researchers from Toyota [169] who discovered the possibility to build nanocomposites from nylon-6... [Pg.44]


See other pages where Filler nanofiller is mentioned: [Pg.1024]    [Pg.238]    [Pg.214]    [Pg.154]    [Pg.2]    [Pg.1024]    [Pg.238]    [Pg.214]    [Pg.154]    [Pg.2]    [Pg.126]    [Pg.127]    [Pg.128]    [Pg.25]    [Pg.26]    [Pg.26]    [Pg.34]    [Pg.58]    [Pg.58]    [Pg.550]    [Pg.798]    [Pg.679]    [Pg.88]    [Pg.178]    [Pg.179]    [Pg.182]    [Pg.231]    [Pg.233]    [Pg.402]    [Pg.1]    [Pg.15]    [Pg.26]    [Pg.37]    [Pg.38]    [Pg.39]    [Pg.45]    [Pg.47]    [Pg.47]    [Pg.48]   


SEARCH



Fillers nanofillers

© 2024 chempedia.info