Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Factors and Stereoselection

In this section we collect a number of disparate observations, speculations and theories. Any effect on reactivity is, of course, a factor that alters the S, but only some of these have been specifically associated with SS. For the present at least these effects cannot always be woven into a grand design. Nevertheless, we shall attempt to relate them to the two large factors, namely, orbital symmetry which precedes, and steric effects, which follow this section. [Pg.293]


A different type of reaction, in which the intermediate formation of a chelate ring is crucial, is the reaction of pyridyl thioates with Grignard reagents, which achieves an overall conversion of an alkyl or aryl halide to a ketone (Scheme 105).378 Grignard reactions are highly susceptible to chelation factors and stereoselectivity is observed in the addition of organomagnesium or... [Pg.219]

In the case of the reverse-electron-demand Diels-Alder reactions, the secondary orbital interaction between the Jt-HOMO of dienophile and the LUMO of 114 or the effect of the orbital phase enviromnents (Chapter Orbital Phase Enviromnents and Stereoselectivities by Ohwada in this volume) cannot be ruled out as the factor controlling the selectivity (Scheme 55). [Pg.216]

The regioselectivity and stereoselectivity of electrophilic additions to 2-benzyl-3-azabicyclo[2.2.1]hept-5-en-3-one are quite dependent on the specific electrophile. Discuss the factors that could influence the differing selectivity patterns that are observed. [Pg.364]

In synthesis, the principal factors that affect the choice of a reducing agent are selectivity among functional groups (chemoselectivity) and stereoselectivity. Chemo-selectivity can involve two issues. One may wish to effect a partial reduction of a particular functional group or it may be necessary to reduce one group in preference to another,78 In the sections that follow, we consider some synthetically useful partial and selective reductions. [Pg.401]

To summarize the key points, D-A reactions are usually concerted processes. The regio- and stereoselectivity can be predicted by applying FMO analysis. The reaction between electron donor dienes and electron acceptor dienophiles is facilitated by Lewis acids, polar solvents, and favorable hydrogen-bonding interactions. The D-A reaction is quite sensitive to steric factors, which can retard the reaction and also influence the stereoselectivity with respect to exo or endo approach. [Pg.487]

From a synthetic point of view, the regioselectivity and stereoselectivity of the cyclization are of paramount importance. As discussed in Section 11.2.3.3 of Part A, the order of preference for cyclization of alkyl radicals is 5-exo > 6-endo 6-exo > 7-endo S-endo > 1-exo because of stereoelectronic preferences. For relatively rigid cyclic structures, proximity and alignment factors determined by the specific geometry of the ring system are of major importance. Theoretical analysis of radical addition indicates that the major interaction of the attacking radical is with the alkene LUMO.321 The preferred direction of attack is not perpendicular to the it system, but rather at an angle of about 110°. [Pg.967]

Chapter 1 deals with alkylation of carbon nucleophiles by alkyl halides and tosylates. We discuss the major factors affecting stereoselectivity in both cyclic and acyclic compounds and consider intramolecular alkylation and the use of chiral auxiliaries. [Pg.1334]

Notably, not only electron-rich dienes, but also electron-deficient dienes nicely participate in the reaction and react benzaldehyde with similar ease and in a similar sense of stereoselectivity. For example, methyl sorbate provides the 1,2-anti isomer exclusively in good yield with excellent regio- and stereoselectivity (run 7). The regioselectivity reacting at Cl of the diene skeleton might stem from electronic factors rather than from other factors such as coordination the coordination of the ester oxygen to nickel metal center, since ( , )-l-(methoxymethyl)-4-methyl-l,3-butadiene and (E,E)-1-(hydroxymethyl)-4-methyl-l,3-butadiene furnish the C4 adducts selectively together with the Cl adducts as minor products (not shown). Notably,... [Pg.194]

The solvent is very important for the hydrogenation of ketones. One of the most important factors in the liquid-phase hydrogenation of ketones is whether the medium is acidic, neutral, or basic, and a great deal of work has gone into attempting to understand chemoselectivity and stereoselectivity based on combinations of the metal catalyst and the reaction medium. [Pg.65]

NU(C) base atoms (5) The stereoselectivity of the BPDEs during intercalative covalent binding in kinked DNA and (6) The possible reorientation of the complex to yield an externally bound adduct. The energetics for each of these processes will be presented to identify the important steps that influence the binding of specific isomers. It will be shown that the orientation of each diastereoisomer of BPDE about specific base atoms in kinked receptor sites in the duplex DNA during covalent bond formation is the determining factor in stereoselectivity. [Pg.255]

Dipolarophiles D1 and D2. In the study of steric and electronic factors on regioselectivity and stereoselectivity of 1,3-cycloaddition of nitrones to olefins, 1-decene (734) and styrene derivatives (735) have been used. By comparative analyses of the kinetic and thermodynamic parameters in the 1,3-cycloadditions... [Pg.315]

It does not help to discuss the influence of substituents in nitro substrate (187) on the stereoselectivity and stereodirection of [3+ 2]-cycloaddition in the general case, because this effect is determined by the sum of different factors and, hence, it depends on the number and nature of the above mentioned substituents. [Pg.561]

Methylsulfenylation of acyclic chiral alkenes such as 5 can also be regio- and stereoselective as a result of steric and electronic factors. [Pg.153]

Regio- and stereoselective dihydroxylation of dienes functionalized at the allylic position with a benzene sulfone group has been reported42. Osmylation of dienic sulfones 33, a potential key synthon for forskolin, occurred exclusively on the A6-7 double bound and preferentially from the a-face of the traws-fused bicyclic molecule, presumably due to a combination of steric and electronic factors (equation 25). While the reaction of diene sulfones proceeded sluggishly under catalytic conditions, treatment of 33a with a stoichiometric amount of OSO4 resulted in quantitative yield of diastereomeric diols 34a and 35 in a 9 1 ratio, respectively. Protecting the hydroxy group of the dienol as its t-butyldimethylsilyl ether (33b) affords diol 34b exclusively. [Pg.706]

In Equation 1.15, q represents the adsorbed amount of solute, ns and qs are the saturation capacities (number of accessible binding sites) for site 1 (nonstereoselect-ive, subscript ns) and site 2 (stereoselective, subscript s), and fens and bs are the equilibrium constants for adsorption at the respective sites [54]. It is obvious that only the second term in this equation is supposed to be different for two enantiomers. Expressed in terms of linear chromatography conditions (under infinite dilution where the retention factor is independent of the loaded amount of solute) it follows that the retention factor k is composed of at least two distinct major binding increments corresponding to nonstereoselective and stereoselective sites according to the following... [Pg.44]

Recent advances in the rhodium-catalyzed [4-1-2] reactions have led to the development of the first highly regioselective intermolecular cyclization, providing access to new classes of carbocycles with both activated and unactivated substrates. The chemo- and stereoselective carbocyclizations of tethered diene-allene derivatives afford new classes of 5,6- and 6,6-bicyclic systems. Additionally, examination of a wide range of factors that influence both diastereo- and enantioselectivity has provided a significant advance in the understanding of catalyst requirements across these systems. [Pg.260]

The dynamic behavior of the model intermediate rhodium-phosphine 99, for the asymmetric hydrogenation of dimethyl itaconate by cationic rhodium complexes, has been studied by variable temperature NMR LSA [167]. The line shape analysis provides rates of exchange and activation parameters in favor of an intermo-lecular process, in agreement with the mechanism already described for bis(pho-sphinite) chelates by Brown and coworkers [168], These authors describe a dynamic behavior where two diastereoisomeric enamide complexes exchange via olefin dissociation, subsequent rotation about the N-C(olefinic) bond and recoordination. These studies provide insight into the electronic and steric factors that affect the activity and stereoselectivity for the asymmetric hydrogenation of amino acid precursors. [Pg.40]

In vitro enzymatic polymerizations have the potential for processes that are more regio-selective and stereoselective, proceed under more moderate conditions, and are more benign toward the environment than the traditional chemical processes. However, little of this potential has been realized. A major problem is that the reaction rates are slow compared to non-enzymatic processes. Enzymatic polymerizations are limited to moderate temperatures (often no higher than 50-75°C) because enzymes are denaturated and deactivated at higher temperatures. Also, the effective concentrations of enzymes in many systems are low because the enzymes are not soluble. Research efforts to address these factors include enzyme immobilization to increase enzyme stability and activity, solubilization of enzymes by association with a surfactant or covalent bonding with an appropriate compound, and genetic engineering of enzymes to tailor their catalytic activity to specific applications. [Pg.182]

Notably, the proposed stereoselectivity of a-insertion seems to run opposite to that observed for some related processes (vide supra). Such systems differ from the present system, though, because they involve an octahedral Rh(III) center, whereas intermediate 88 is a Rh(I)-square-planar complex. In Werner s original stoichiometric studies, the same mechanistic dichotomy was evident (Scheme 9.14) - square planar Rh(I)-complexes underwent cisoid insertion in the absence of other factors and transoid addition in the presence of an oxidant (HX). In intermediate 88, coordination of the alkene moiety to the rhodium center may also play a role in directing insertion. [Pg.299]


See other pages where Factors and Stereoselection is mentioned: [Pg.185]    [Pg.293]    [Pg.185]    [Pg.293]    [Pg.185]    [Pg.293]    [Pg.185]    [Pg.293]    [Pg.260]    [Pg.265]    [Pg.1]    [Pg.11]    [Pg.26]    [Pg.440]    [Pg.890]    [Pg.376]    [Pg.35]    [Pg.42]    [Pg.585]    [Pg.5]    [Pg.45]    [Pg.95]    [Pg.378]    [Pg.7]    [Pg.252]    [Pg.1]    [Pg.18]    [Pg.267]    [Pg.461]    [Pg.216]   


SEARCH



Stereoselection Deriving from Steric and Conformational Factors

Stereoselectivity and

Stereoselectivity, factors

© 2024 chempedia.info