Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exothermic quantity

The quantity x is called the Flory-Huggins interaction parameter It is zero for athermal mixtures, positive for endothermic mixing, and negative for exothermic mixing. These differences in sign originate from Eq. (8.39) and reaction (8.A). [Pg.523]

Between 50 and 60% of the formaldehyde is formed by the exothermic reaction (eq. 23) and the remainder by endothermic reaction (eq. 24) with the net result of a reaction exotherm. Carbon monoxide and dioxide, methyl formate, and formic acid are by-products. In addition, there are also physical losses, hquid-phase reactions, and small quantities of methanol in the product, resulting in an overall plant yield of 86—90% (based on methanol). [Pg.493]

Other techniques include oxidative, steam atmosphere (33), and molten salt (34) pyrolyses. In a partial-air atmosphere, mbber pyrolysis is an exothermic reaction. The reaction rate and ratio of pyrolytic filler to ok products are controlled by the oxygen flow rate. Pyrolysis in a steam atmosphere gives a cleaner char with a greater surface area than char pyroly2ed in an inert atmosphere however, the physical properties of the cured compounded mbber are inferior. Because of the greater surface area, this pyrolytic filler could be used as activated carbon, but production costs are prohibitive. Molten salt baths produce pyroly2ed char and ok products from tine chips. The product characteristics and quantities depend on the salt used. Recovery of char from the molten salt is difficult. [Pg.15]

With batch reactors, it may be possible to add all reactants in their proper quantities initially if the reaction rate can be controlled by injection of initiator or acqustment of temperature. In semibatch operation, one key ingredient is flow-controlled into the batch at a rate that sets the production. This ingredient should not be manipiilated for temperature control of an exothermic reactor, as the loop includes two dominant lags—concentration of the reactant and heat capacity of the reaction mass—and can easily go unstable. [Pg.749]

Acrylonitrile. Acrylonitrile is produced by reacting propylene, ammonia, and owgeu (air) in a single flmdized bed of a complex catalyst. Known as the SOHIO process, this process was first operated commercially in 1960. In addition to acrylonitrile, significant quantities of HCN and acetonitrile are also produced. This process is also exothermic. Temperature control is achieved by raising steam inside vertical tubes immersed in the bed [Veatch, Hydrocarbon Proce.ss. Pet. Refiner, 41, 18 (November 1962)]. [Pg.1573]

NO -laden fumes are preheated by effluent from the catalyst vessel in the feed/effluent heat exchanger and then heated by a gas- or oil-fired heater to over 600° F. A controlled quantity of ammonia is injected into the gas stream before it is passed through a metal oxide, zeolite, or promoted zeolite catalyst bed. The NO is reduced to nitrogen and water in the presence or ammonia in accordance with the following exothermic reactions ... [Pg.2196]

In this process liquid propylene, containing some propane, is mixed with benzene and passed through a reaction tower containing phosphoric acid on kieselguhr as catalyst. The reaction is exothermic and the propane present acts as a quench medium. A small quantity of water is injected into the reactor to... [Pg.636]

The chlorosilanes are dissolved in a suitable solvent system and then blended with the water which may contain additives to control the reaction. In the case of methylsilicone resin the overall reaction is highly exothermic and care must be taken to avoid overheating which can lead to gelation. When substantial quantities of chlorophenylsilanes are present, however, it is often necessary to raise the temperature to 70-75°C to effect a satisfactory degree of hydrolysis. [Pg.828]

While alkyl cyanoacrylate-based adhesives are used globally in a large variety of domestic and commercial settings, their physical and toxicological properties must be considered. Alkyl cyanoacrylate polymerization is a very exothermic reaction, so care must be taken to prevent the contamination of large quantities with any materials, which might initiate a very rapid, runaway reaction. Also, alkyl cyanoacrylate monomers and the polymers which they form, will burn, and users should avoid their use near sparks or open flames. [Pg.865]

Caution 2,6-dichloroquinone-4-chloroimide can decompose exothermically (5) it should, therefore, only be stored in small quantities in the refrigerator ... [Pg.261]

In addition to molecular geometry, the most important quantity to come out of molecular modeling is the energy. Energy can be used to reveal which of several isomers is most stable, to determine whether a particular chemical reaction will have a thermodynamic driving force (an exothermic reaction) or be thermodynamically uphill (an endothermic reaction), and to ascertain how fast a reaction is likely to proceed. Other molecular properties, such as the dipole moment, are also important, but the energy plays a special role. [Pg.13]

Adiabatic Reaction Temperature (T ). The concept of adiabatic or theoretical reaction temperature (T j) plays an important role in the design of chemical reactors, gas furnaces, and other process equipment to handle highly exothermic reactions such as combustion. T is defined as the final temperature attained by the reaction mixture at the completion of a chemical reaction carried out under adiabatic conditions in a closed system at constant pressure. Theoretically, this is the maximum temperature achieved by the products when stoichiometric quantities of reactants are completely converted into products in an adiabatic reactor. In general, T is a function of the initial temperature (T) of the reactants and their relative amounts as well as the presence of any nonreactive (inert) materials. T is also dependent on the extent of completion of the reaction. In actual experiments, it is very unlikely that the theoretical maximum values of T can be realized, but the calculated results do provide an idealized basis for comparison of the thermal effects resulting from exothermic reactions. Lower feed temperatures (T), presence of inerts and excess reactants, and incomplete conversion tend to reduce the value of T. The term theoretical or adiabatic flame temperature (T,, ) is preferred over T in dealing exclusively with the combustion of fuels. [Pg.359]

If titanium is exposed to certain vigorously oxidising environments, oxidation does not cease at the surface, and a rapid exothermic reaction in depth ensues. The fundamental reason for this remarkable change in the character of the oxidation is not known with any certainty, but it is significant that in almost every instance the presence of a small quantity of water, sometimes in trace amounts, prevents this rapid oxidation in depth. [Pg.879]

Enthalpies of formation for a variety of compounds are listed in Table 8.3. Notice that, with a few exceptions, enthalpies of formation are negative quantities. This means that the formation of a compound from the elements is ordinarily exothermic. Conversely, when a compound decomposes to the elements, heat usually must be absorbed. [Pg.208]

It is more common to find that AH° and AS° have the same sign (Table 17.2, III and IV). When this happens, the enthalpy and entropy factors oppose each other. AG° changes sign as temperature increases, and the direction of spontaneity reverses. At low temperatures, AH° predominates, and the exothermic reaction, which may be either the forward or the reverse reaction, occurs. As the temperature rises, the quantity TAS° increases in magnitude and eventually exceeds AH°. At high temperatures, the reaction that leads to an increase in entropy occurs. In most cases, 25°C is a low temperature, at least at a pressure of 1 atm. This explains why exothermic reactions are usually spontaneous at room temperature and atmospheric pressure. [Pg.464]

Although the literature contains a very large number of research articles concerned with the kinetics and mechanisms of reactions involving solids, there are comparatively few authoritative, critical and comprehensive reviews of the formidable quantity of information which is available. Probably the most important general account of the field is the book Chemistry of the Solid State, edited by Gamer [63]. Chapters 7—9 are particularly relevant in the present context as they provide a systematic exposition of the kinetic equations applicable to the decomposition of single solids (Jacobs and Tompkins [28]) and their application to endothermic [64] and exothermic [65] reactions. [Pg.9]


See other pages where Exothermic quantity is mentioned: [Pg.264]    [Pg.138]    [Pg.68]    [Pg.28]    [Pg.509]    [Pg.264]    [Pg.138]    [Pg.68]    [Pg.28]    [Pg.509]    [Pg.308]    [Pg.255]    [Pg.49]    [Pg.477]    [Pg.470]    [Pg.10]    [Pg.373]    [Pg.518]    [Pg.526]    [Pg.383]    [Pg.224]    [Pg.43]    [Pg.62]    [Pg.514]    [Pg.138]    [Pg.107]    [Pg.126]    [Pg.429]    [Pg.753]    [Pg.773]    [Pg.106]    [Pg.279]    [Pg.989]    [Pg.1487]    [Pg.867]    [Pg.40]    [Pg.17]    [Pg.61]    [Pg.444]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Exothermic, exothermal

Exothermicity

Exotherms

© 2024 chempedia.info