Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exhaust valve seat wear

Alkyl lead compounds are extremely effective gasoline antiknock agents. By decomposing to form lead oxide compounds during the gasoline combustion process, lead alkyls interrupt the rapid chain scission reactions which lead to combustion knock. Also, lead alkyls help to prevent exhaust valve seat wear and may minimize octane requirement increase. However, unless utilized in conjunction with lead scavengers such as 1,2-dichloromethane, lead deposits can accumulate within the gasoline combustion chamber. [Pg.120]

Catalysts were expensive, however, so the petroleum industry did not solve the problem of cheap, lead-free, knock-free gasoline until the 1970s, after General Motors adopted the catalytic converter. Lead compounds inactivate the catalysts, and sophisticated catalytic cracking techniques had to be developed to replace the fuel additive. Ironically, an even more difficult job was finding a substitute for the protective coating that tetraethyl lead formed on exhaust valve seats not even newly developed, extremely hard materials prevent wear and tear on them as well as tetraethyl lead did. [Pg.95]

Whether decarburization will be an issue for internal combustion engines burning H2 is difficult to predict from existing information. Low-alloy carbon steels begin to decarburize at temperatures around the operating temperature of exhaust valves, but exhaust valves and valve seats are made from high-alloy steels, austenitic alloys, and superalloys where the carbon is much more stable than low-alloy carbon steels. The hardenable martensitic valve stems of exhaust valves may experience decarburization over extended periods, and this would lead to accelerated wear because of the softened surface that results from decarburization. [Pg.315]


See other pages where Exhaust valve seat wear is mentioned: [Pg.93]    [Pg.215]   


SEARCH



Exhaust valves

Seating

Seats

Valve seats

© 2024 chempedia.info