Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser studies, proton transfer excited-state

Itoh, M. Adachi, T. Transient absorption and two-step laser excitation fluorescence studies of the excited-state proton transfer and relaxation in the methanol solution of 7-hydroxyflavone. J. Am. Chem. Soc. 1984, 106, 4320 -324. [Pg.30]

Itoh, M. Hasegawa, K. Fujiwara, Y. Two-step laser excitation fluorescence study of the ground- and excited-state proton transfer in alcohol solutions of 7-hydroxyisoflavone. J. Am. Chem. Soc. 1986, 108, 5853-5857. [Pg.31]

The dependence of intramolecular proton transfer on solvent friction has been established for 2-(2 -hydroxy-5-methylphenyl) benzotriazole in alcohol and other solvents. Excited-state proton transfer in 2-(2 -hydroxyphenyl) benzothiazole has also been studied 2 Photophysical properties and laser performance of w, w -bis ( oxazol-2-yl)- -oligophenylenes in dioxane have been measured at room temperature. +p increases with the number of phenyl rings between terminally positioned oxazoyl groups. [Pg.13]

For the studies of the excited-state proton transfer reactions of aromatic compounds, kinetic analyses by means of fluorimetry, single-photon counting, and laser photolysis methods are very important to obtain the exact data. Their acid-base properties in the excited states can be understood on the bases of thermodynamic analyses and electronic structures. Large changes in the acidity constant of organic compounds upon electronic excitation may be applicable to various fields, especially to biochemistry. [Pg.38]

The conclusion we can draw from all this research is that there is still no coherent picture of intramolecular ground and excited-state proton transfer reactions in tautomers. The topic is complicated from an experimental as well as a theoretical point of view, and many questions remain. Intramolecular ground-state proton transfer is hard to study directly, and although femtosecond pulsed lasers allow initiating and following proton transfers in the excited state on a very short time scale, these methods bring their own complications to the interpretation of the results. ... [Pg.19]

Ultrafast studies on tautomerism concentrate on compounds that can exhibit hydrogen transfer in the electronically excited state. Hydrogen transfer is a very typical reaction for the interconversion between different tautomeric forms. It converts enol to keto, amino to imino, imino to enamino, and lactim to lactam forms, to name some examples. For time-resolved experiments, excited-state intramolecular proton transfer (ESIPT) is particularly well suited since a short laser pulse in the visible or ultraviolet (UV) spectral region can trigger this process by promoting the molecule into the electronically excited state and initiating the transfer in this way [3]. The vast majority of experiments on tautomerism with ultrafast time resolution are therefore done on compounds exhibiting ESIPT. [Pg.79]

Hydrogen transfer in excited electronic states is being intensively studied with time-resolved spectroscopy. A typical scheme of electronic terms is shown in fig. 46. A vertical optical transition, induced by a picosecond laser pulse, populates the initial well of the excited Si state. The reverse optical transition, observed as the fluorescence band Fj, is accompanied by proton transfer to the second well with lower energy. This transfer is registered as the appearance of another fluorescence band, F2, with a large anti-Stokes shift. The rate constant is inferred from the time dependence of the relative intensities of these bands in dual fluorescence. The experimental data obtained by this method have been reviewed by Barbara et al. [1989]. We only quote the example of hydrogen transfer in the excited state of... [Pg.109]

Excited-state intramolecular proton transfer (ESIPT) processes are important for both practical and fundamental reasons. o-Hydroxybenzaldehyde (OHBA) is the simplest aromatic molecule displaying ESIPT and serves as a model system for comparison with theory. TRPES was used to study ESIPT in OHBA, monodeuterated ODBA and an analogous two-ring system hydroxyacetonaph-tone (HAN) as a function of pump laser wavelength, tuning over the entire enol... [Pg.550]

The efficient photodecarboxylation of the keto acids (77) has been studied. The reactions involve the formation of the carbanions (78). Aqueous solutions of fenofibric acid (79) at pH 7.4 show the formation of two intermediates when subjected to laser excitation. The study has indicated that the triplet state of the acid in water is of a jtji type. Photoionization is an important process in the aqueous medium. New photoreactive phenylalanine analogues (80) and (81) have been prepared. These were incorporated into position 5 of the pentapeptide, thymopentin. The resultant derivatives were photolabile and underwent decomposition on irradiation at 365 nm. Computational methods have been used to analyse the photoreactivity of the tryptophan derivative (82). The calculations were directed towards an understanding of the quenching of the fluorescence. The results indicate that hydrogen transfer alone does not quench the fluorescence, but that an aborted decarboxylation path is involved. Proton transfer... [Pg.11]

The two examples given set the paradigm for an enormous class of proton tautomerization reactions. In both cases, a proton is moved from one position in the molecule to another. Sometimes, this can be accomplished by a direct transfer as in the case of o-HBA and derivatives, and sometimes solvents, in particular the presence of H or OHor a number of bridging solvent molecules are actively involved. As was shown in Chapter 1 of this book, reactions of the first type have been the subject of study since the early 1900s, and mainly in the ground state, while reactions of the second type are a major topic of interest as the advance of fast pulsed lasers, and mainly in the excited state. But both cases have a number of things in common, which are relevant for the study of the kinetics of these reactions. [Pg.218]

The ultrafast PT, which occurs typically on time scales of 10 13-10 14 s will not be considered. Such transfers are observed in molecular systems in which the potential energy surface (PES) governing the proton motion is essentially barrierless but has different minima positions in different electronic states, so that the proton finds itself in an off-equilibrium position after electronic excitation and relaxes to the new equilibrium position. The contribution of tunneling may be disregarded and the rate of these processes does not depend very strongly on temperature. These reactions, which are of great current interest, are intensely studied by ultrafast laser spectroscopy and are reviewed elsewhere [16,17],... [Pg.149]


See other pages where Laser studies, proton transfer excited-state is mentioned: [Pg.15]    [Pg.16]    [Pg.13]    [Pg.13]    [Pg.1021]    [Pg.157]    [Pg.81]    [Pg.43]    [Pg.1063]    [Pg.1065]    [Pg.33]    [Pg.43]    [Pg.1035]    [Pg.21]    [Pg.35]    [Pg.394]    [Pg.1075]    [Pg.28]    [Pg.152]    [Pg.13]    [Pg.55]    [Pg.246]    [Pg.33]    [Pg.43]    [Pg.59]   


SEARCH



Excitation transfer

Laser excitation

Protonated state

Protonation state

Protonation studies

© 2024 chempedia.info