Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical cations fluorescence from excited

Elegant evidence that free electrons can be transferred from an organic donor to a diazonium ion was found by Becker et al. (1975, 1977a see also Becker, 1978). These authors observed that diazonium salts quench the fluorescence of pyrene (and other arenes) at a rate k = 2.5 x 1010 m-1 s-1. The pyrene radical cation and the aryldiazenyl radical would appear to be the likely products of electron transfer. However, pyrene is a weak nucleophile the concentration of its covalent product with the diazonium ion is estimated to lie below 0.019o at equilibrium. If electron transfer were to proceed via this proposed intermediate present in such a low concentration, then the measured rate constant could not be so large. Nevertheless, dynamic fluorescence quenching in the excited state of the electron donor-acceptor complex preferred at equilibrium would fit the facts. Evidence supporting a diffusion-controlled electron transfer (k = 1.8 x 1010 to 2.5 X 1010 s-1) was provided by pulse radiolysis. [Pg.208]

This chemoluminescence results from interaction of 156 (generated from 155 under thermal conditions) and 1,3-DIBF (formed in a minor amount from 156). The first step is the formation of an encounter complex. Electron transfer generates a peroxide radical anion of 156 and a radical cation of 1,3-DIBF. Cleavage of the 0-0 bond in the radical anion of 156 forms an o-dibenzoylbenzene radical anion. Annihilation of the oppositely charged ions gives an excited singlet of 1,3-DIBF (with subsequent fluorescence) (82JA1041). [Pg.62]

Consistently, the PIA spectra of toluene solutions containing MP-Ceo and OPVn (n = 2, 3 or 4) in a 1 1 molar ratio, recorded using selective photoexcitation of MP C60 at 528 nm (Fig. 1.28b), invariably exhibit an absorption at 1.78 eV with an associated shoulder at 1.54 eV, characteristic of MP-C6o(7i) [103]. The monomolecular decay (—AT oc Ip, p = 0.89-0.96) with lifetime 150-260 ps associated with these PIA bands supports this assignment. Furthermore, weak fullerene fluorescence at 1.73 eV (715 nm) is observed under these conditions for all three mixtures. No characteristic PIA bands of OP Vw+ radical cations or MP-Cg0 radical anions are discernible under these conditions. From these observations we conclude that electron transfer from the ground state of the OPVn molecules to the singlet or triplet excited state of MP-Cgo does not occur in toluene solution. [Pg.38]

The fluorescence polarization excitation spectrum has been measured for thymine in aqueous solution. " The depolarization at the red edge is attributed to the hidden n, ir transition. Ionization of the lowest excited singlet and triplet states have been determined by the effect of pH on the absorption, fluorescence, and phosphorescence spectra of purines and pyrimidines. " Spectral, polarization, and quantum yield studies of cytidylyl-(3, 5 )-adenosine have also been published. Intermediates in the room-temperature flash photolysis of adenine and some of its derivatives have been identified hydrated electron, radical cations and anions, and neutral radicals resulting from their reactions have been assigned. Photoionization occurs via the triplet state. FMN encapsulated in surfactant-entrapped water pools interacts with polar head groups, entrapped water molecules, and outer apolar solvent. ... [Pg.35]

Information regarding the solution conformation of 13 was derived from the pyropheophorbide ring current induced shifts in the resonance positions of the carotenoid and quinone moieties. These two species were found to be extended away from the tetrapyrrole, rather than folded back across it. The absorption spectrum of 13 was essentially identical to the sum of the spectra of model compounds. The pyropheophorbide fluorescence, however, was strongly quenched by the addition of the quinone. This implies the formation of a C-Phe -Q state via photoinitiated electron transfer from the pyropheophorbide singlet state, as was observed for C-P-Q triads (see Figure 4). Excitation of the molecule in dichloromethane solution at 207 K with a 590 nm laser pulse led to the observation of a carotenoid radical cation transient absorption. Thus, the C-Phe -Q " state can go on via an electron transfer step analogous to step 4 in Figure 4 to yield a final C -Phe-Q state. This state had a lifetime of 120 ns. The quantum yield at 207 K was 0.04. At ambient temperatures, the lifetime of the carotenoid radical cation dropped to about SO ns, and the quantum yield could not be determined accurately because of the convolution of the decay into the instrument response function. [Pg.27]


See other pages where Radical cations fluorescence from excited is mentioned: [Pg.262]    [Pg.53]    [Pg.61]    [Pg.263]    [Pg.16]    [Pg.70]    [Pg.142]    [Pg.117]    [Pg.250]    [Pg.131]    [Pg.685]    [Pg.889]    [Pg.151]    [Pg.281]    [Pg.57]    [Pg.104]    [Pg.287]    [Pg.131]    [Pg.116]    [Pg.124]    [Pg.147]    [Pg.150]    [Pg.215]    [Pg.196]    [Pg.199]    [Pg.134]    [Pg.135]    [Pg.257]    [Pg.12]    [Pg.121]    [Pg.150]    [Pg.37]    [Pg.41]    [Pg.348]    [Pg.10]    [Pg.1621]    [Pg.1962]    [Pg.2150]    [Pg.414]    [Pg.16]    [Pg.307]    [Pg.24]    [Pg.826]    [Pg.31]    [Pg.39]   
See also in sourсe #XX -- [ Pg.61 , Pg.62 , Pg.63 ]




SEARCH



Excited fluorescence

Radicals fluorescence

Radicals from

Radicals) excited

© 2024 chempedia.info