Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transient absorption, radical cations

Information regarding the solution conformation of 13 was derived from the pyropheophorbide ring current induced shifts in the resonance positions of the carotenoid and quinone moieties. These two species were found to be extended away from the tetrapyrrole, rather than folded back across it. The absorption spectrum of 13 was essentially identical to the sum of the spectra of model compounds. The pyropheophorbide fluorescence, however, was strongly quenched by the addition of the quinone. This implies the formation of a C-Phe -Q state via photoinitiated electron transfer from the pyropheophorbide singlet state, as was observed for C-P-Q triads (see Figure 4). Excitation of the molecule in dichloromethane solution at 207 K with a 590 nm laser pulse led to the observation of a carotenoid radical cation transient absorption. Thus, the C-Phe -Q " state can go on via an electron transfer step analogous to step 4 in Figure 4 to yield a final C -Phe-Q state. This state had a lifetime of 120 ns. The quantum yield at 207 K was 0.04. At ambient temperatures, the lifetime of the carotenoid radical cation dropped to about SO ns, and the quantum yield could not be determined accurately because of the convolution of the decay into the instrument response function. [Pg.27]

Excitation of an aqueous solution of poly(A/St/Phen) with a 355-nm, 22-ps laser pulse in the presence of MV2+ generated a transient absorption band peaking at about 600 nm due to MV + [120]. As shown in Fig. 16, the buildup of the 600-nm band completes immediately after the pulse excitation, indicating that the photoinduced ET from the singlet-excited Phen residue ( Phen ) to MV2 + occurs on a time scale comparable to or shorter than the duration of the laser pulse (ca. 22 ps) [120], Figure 16 also shows that a fast decay of the absorbance at 600 nm owing to the back ET from MV + to the Phen cation radical (Phen+ )... [Pg.85]

Delaire et al. [124] have reported that laser photolysis of an acidic solution (pH 2.8) containing PMAvDPA (23) and MV2 + allows the formation of surprisingly long-lived MV + - and DPA cation radicals with a very high charge escape quantum yield. The content of the DPA chromophores in PMAvDPA is as low as less than 1/1000 in the molar ratio DPA/MAA. Figure 20 shows a decay profile of the transient absorption due to MV + monitored at 610 nm [124]. The absorption persists for several milliseconds. As depicted in Fig. 20, the decay obeys second-order kinetics, which yields kb = 3.5 x 10s M 1 s. From the initial optical density measured at 610 nm, the quantum yield for charge escape was estimated to be 0.72 at 0.2 M MV2 +. ... [Pg.90]

MFEs on the dynamics of the radical pair in CtoN" clusters (C oN " ) -MePH system were examined in TH F-H2O (2 1) mixed solvent. M FEs on the decay profiles of the transient absorption at 5 20 nm due to the phenothiazine cation radical (P H " ) are shown in Eigure 15.9b. The decay was retarded in the presence of the magnetic field. In addition, the absorbance at 10 (is after laser excitation increased with increasing magnetic field. The result indicated that the yield of the escaped PH increased with the increase in magnetic field. Therefore, the MFEs on the decay profile were clearly observed. [Pg.271]

Kemp and coworkers employed the pulse radiolysis technique to study the radiolysis of liquid dimethyl sulfoxide (DMSO) with several amines as solutes [triphenylamine, and N, A, A, N -tetramethyl-p-phenylenediamine (TMPD)]. The radiolysis led to the formation of transient, intense absorptions closely resembling those of the corresponding amine radical cations. Pulse radiolysis studies determine only the product Ge, where G is the radiolytic yield and e is the molar absorption. Michaelis and coworkers measured e for TMPD as 1.19 X 10 m s and from this a G value of 1.7 is obtained for TMPD in DMSO. The insensitivity of the yield to the addition of electron scavenger (N2O) and excited triplet state scavenger (naphthalene) proved that this absorption spectrum belonged to the cation. [Pg.895]

Hole Transfer in DNA by Monitoring the Transient Absorption of Radical Cations of Organic Molecules Conjugated to DNA... [Pg.127]

Kawai K, Majima T (2004) Hole Transfer in DNA by Monitoring the Transient Absorption of Radical Cations of Organic Molecules Conjugated to DNA. 236 117-137 Kee TP, Nixon TD (2003) The Asymmetric Phospho-Aldol Reaction. Past, Present, and Future. 223 45-65... [Pg.219]

In order to understand these results it is necessary to consider the nature of the intermediates formed upon photolysis of arylamines. The absorption spectra of transients produced upon photolysis of aniline and various alkyl ring-substituted arylamines was obtained by Land and Porter (18) in different solvents using a flash photolysis apparatus. On this basis they identified both an anilinyl radical (PhNH-) and an anilinyl radical cation (PhNHj). The radical cation is present in polar media (H2O) but absent in cyclohexane. From these results, a homolytic cleavage... [Pg.126]

Fig. 14 Transient absorption spectrum of anthracene cation radical (ANT+ ) obtained upon 30-ps laser excitation of the [ANT, OsOJ charge-transfer complex in dichloro-methane. The inset shows the authentic spectrum of ANT+ obtained by an independent (electrochemical) method. Reproduced with permission from Ref. 96b. Fig. 14 Transient absorption spectrum of anthracene cation radical (ANT+ ) obtained upon 30-ps laser excitation of the [ANT, OsOJ charge-transfer complex in dichloro-methane. The inset shows the authentic spectrum of ANT+ obtained by an independent (electrochemical) method. Reproduced with permission from Ref. 96b.
Bobrowski and Das33 studied the transient absorption phenomena observed in pulse radiolysis of several retinyl polyenes at submillimolar concentrations in acetone, n -hexane and 1,2-dichloroethane under conditions favourable for radical cation formation. The polyene radical cations are unreactive toward oxygen and are characterized by intense absorption with maxima at 575-635 nm. The peak of the absorption band was found to be almost independent of the functional group (aldehyde, alcohol, Schiff base ester, carboxylic acid). In acetone, the cations decay predominantly by first-order kinetics with half life times of 4-11 ps. The bimolecular rate constant for quenching of the radical cations by water, triethylamine and bromide ion in acetone are in the ranges (0.8-2) x 105, (0.3-2) x 108 and (3 — 5) x 1010 M 1 s 1, respectively. [Pg.337]

Fig. 9 (A) Transient absorption spectrum of the cation radical from anthracene (AnH) in CH2C12 at about 35 ps following the 532 nm charge-transfer excitation of the 0s04 complex with 30-ps (FWHM) laser pulse. The inset shows the steady-state spectrum of AnH+- obtained by spectroelectrochemical generation. (B) The decay of the charge-transfer transient by following the absorbance at Amax = 742 nm. The inset shows the first-order plot of the absorbance decay subsequent to the maximum... Fig. 9 (A) Transient absorption spectrum of the cation radical from anthracene (AnH) in CH2C12 at about 35 ps following the 532 nm charge-transfer excitation of the 0s04 complex with 30-ps (FWHM) laser pulse. The inset shows the steady-state spectrum of AnH+- obtained by spectroelectrochemical generation. (B) The decay of the charge-transfer transient by following the absorbance at Amax = 742 nm. The inset shows the first-order plot of the absorbance decay subsequent to the maximum...
The differential absorption spectra obtained in the presence of these two nucleotides are indeed similar to those obtained after reduction electrolysis of the complex in the first reduction wave, and obtained by pulse radiolysis. The prerence of the deprotonated radical cation GMI —H) can also be detected by recording the transient absorption after reaction of the reduced complex with O2. [Pg.53]

The oxidative degradations of binuclear azaarenes (quinoline, isoquinoline, and benzodrazines) by hydroxyl and sulfate radicals and halogen radicals have been studied under both photochemical and dark-reaction conditions. A shift from oxidation of the benzene moiety to the pyridine moiety was observed in the quinoline and isoquinoline systems upon changing the reaction from the dark to photochemical conditions. The results were interpreted using frontier-orbital calculations. The reaction of OH with the dye 3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-(l,8)(2//,5//)-acridinedione has been studied, and the transient absorption bands assigned in neutral solution.The redox potential (and also the pA a of the transient species) was determined. Hydroxyl radicals have been found to react with thioanisole via both electron transfer to give radical cations (73%) and OH-adduct formation (23%). The bimolec-ular rate constant was determined (3.5 x lO lmoU s ). " ... [Pg.146]

The solute benzene radical cation was formed on pulse radiolysis of an acidic aqueous solution of benzene. The transient optical absorption bands (A-max = 310, 350-500 nm) were assigned to the solute benzene radical cation which is formed on acid-catalysed dehydration of the OH adduct. The radical cation is able to undergo an electron-transfer reaction with Br and was found to be a strong electron oxidant. Pulse radiolysis has been used to study the complex reaction that follows electron addition to hydroxybenzophenones (HOBPs). The various radical species involved have been characterized spectrally and their p/fa values evaluated. The differences... [Pg.206]


See other pages where Transient absorption, radical cations is mentioned: [Pg.236]    [Pg.215]    [Pg.527]    [Pg.529]    [Pg.529]    [Pg.895]    [Pg.902]    [Pg.1054]    [Pg.1070]    [Pg.902]    [Pg.1054]    [Pg.1070]    [Pg.55]    [Pg.68]    [Pg.68]    [Pg.87]    [Pg.95]    [Pg.117]    [Pg.131]    [Pg.132]    [Pg.141]    [Pg.242]    [Pg.337]    [Pg.190]    [Pg.195]    [Pg.203]    [Pg.62]    [Pg.230]    [Pg.261]    [Pg.287]    [Pg.302]    [Pg.383]   
See also in sourсe #XX -- [ Pg.404 ]




SEARCH



Absorption radical cations

Cationic absorption

Radical absorption

Radical transient

Transient Absorption of Radical Cations

© 2024 chempedia.info