Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excitation photocatalysis

Heterogeneous photochemical reactions fall in the general category of photochemistry—often specific adsorbate excited states are involved (see, e.g.. Ref. 318.) Photodissociation processes may lead to reactive radical or other species electronic excited states may be produced that have their own chemistry so that there is specificity of reaction. The term photocatalysis has been used but can be stigmatized as an oxymoron light cannot be a catalyst—it is not recovered unchanged. [Pg.738]

Catalysis (qv) refers to a process by which a substance (the catalyst) accelerates an otherwise thermodynamically favored but kiaeticahy slow reaction and the catalyst is fully regenerated at the end of each catalytic cycle (1). When photons are also impHcated in the process, photocatalysis is defined without the implication of some special or specific mechanism as the acceleration of the prate of a photoreaction by the presence of a catalyst. The catalyst may accelerate the photoreaction by interaction with a substrate either in its ground state or in its excited state and/or with the primary photoproduct, depending on the mechanism of the photoreaction (2). Therefore, the nondescriptive term photocatalysis is a general label to indicate that light and some substance, the catalyst or the initiator, are necessary entities to influence a reaction (3,4). The process must be shown to be truly catalytic by some acceptable and attainable parameter. Reaction 1, in which the titanium dioxide serves as a catalyst, may be taken as both a photocatalytic oxidation and a photocatalytic dehydrogenation (5). [Pg.398]

Photocatalysis uses semiconductor materials as catalysts. The photoexcitation of semiconductor particles generates electron-hole pairs due to the adsorption of 390 run or UV light of low wavelength (for Ti02). If the exciting energy employed comes from solar radiation, the process is called solar photocatalysis [21],... [Pg.430]

Since the discovery of photoelectrochemical splitting of water on titanium dioxide (TiOj) electrodes (Fujishima and Honda, 1972), semiconductor-based photocatalysis has received much attention. Although TiO is superior to other semiconductors for many practical uses, two types of defects limit its photoeatalytic activity. Firstly, TiO has a high band-gap (E =3.2 eV), and it can be excited only by UV light (k < 387 nm), which is about 4-5% of the overall solar spectmm. Thus, this restricts the use of sunlight or visible light (Kormann et al., 1988). Secondly, the... [Pg.125]

Heterogeneous photocatalysis, applied to the transformations of organic mo lecules, has become an exciting and rapidly growing area of research in the last few years (refs.1-3). The interest of this study arise from synthetic, mechanis tic or environmental purposes. [Pg.445]

In the development of meta oxiae photocata-ysts with high and stable photocatalytic activity for water decomposition, the establishment of a correlation betweer photocatalytically active sites and metal oxide structures is desirable. In particular, it is important to see how the local structures of metal oxides are associated with the essential steps such as photoexcitation, the transfei of excited charges to the surface, and reduction/oxidation of adsorbec reactants. This chapter deals with photolysis of water by titanates with tunnel structures. The roles of tunnel-related local structures ir the photocatalysis and of Ru02 promoters loaded on the titanates are presented. [Pg.307]

The investigation of photocatalysis and photosorption enables us to study the role played by the excited states of the surface bonds of the catalyst lattice in the elementary step of the catalytic reaction. [Pg.118]

Kinetic studies of photoreactions on semiconductor nanoparticles are important for both science and practice. Of scientific interest are the so-called quantum size effects, which are most pronounced on these particles shifting the edge of adsorption band, participation of hot electrons in the reactions and recombination, dependence of the quantum yield of luminescence and reactions on the excitation wavelength, etc. In one way or another all these phenomena affect the features of photocatalytic reactions. At present photocatalysis on semiconductors is widely used for practical purposes, mainly for the removal of organic contamination from water and air. The most efficient commercial semiconductor photocatalysts (mainly the TiC>2 photocatalysts) have primary particles of size 10-20 nm, i.e., they consist of nanoparticles. Results of studying the photoprocesses on semiconductor particles (even of different nature) are used to explain the regularities of photocatalytic processes. This indicates the practical significance of these processes. [Pg.35]

A [2 + 2] photocycloaddition with two alkenes can also be induced by photochemical electron transfer [16,17]. In such cases, sensitizers are frequently used and the reactions therefore occur under photocatalysis [18]. Under photochemical electron transfer (PET) conditions, the diene 10 yielded in an intramolecular reaction the cyclobutane 11 (Scheme 5.2) [19], such that in this reaction a 12-membered cyclic polyether is built up. The reaction starts with excitation of the sensitizer 1,4-dicyanonaphthalene (DCN) only 0.1 equivalents of the sensitizer are added to the reaction mixture. Electron transfer occurs from the substrate 10 to the excited sensitizer, leading to the radical cation I. This intermediate then undergoes cycli-zation to the radical cation of the cyclobutane (II). Electron transfer from the radical anion of the sensitizer to the intermediate II leads to the final product 11, and regenerates the sensitizer. In some cases, for example the cydodimerization of N-vinylcarbazole, the effidency is particularly high because a chain mechanism is involved [20]. [Pg.139]

Takizawa, T. Watanabe, T. Honda, K. Photocatalysis through excitation of adsorbates. 2. A comparative study of rhodamine B and methylene blue on CdS, J. Phys. Chem. 1978, 82, 1391. [Pg.344]

The predictions concerning PL presented earlier (Anpo and Che, 1999) (applications to a broader range of systems, such as sulfides, (oxi)car-bides, (oxi)nitrides time-resolved equipment for in-depth investigation of excited states increased attention to solar energy and photocatalysis related to environmental problems) are still largely valid. [Pg.38]

This AOT will be discussed later in this book therefore, only a brief introduction is included here. Heterogeneous photocatalysis is a process based on the direct or indirect absorption of visible or UV radiant energy by a solid, normally a wide-band semiconductor. In the interfacial region between the excited solid and the solution, destruction or removal of contaminants takes place, with no chemical change in the catalyst. [Pg.356]

In catalyzed photolysis either the catalyst molecule (Fig. 5-11, situation B) or the substrate molecule (Fig. 5-11, situation C), or both, are in an electronically excited state during the catalytic step. The electronically excited catalyst molecule is produced via photon absorption by a nominal catalyst (Fig. 5-11, situation B). The reaction of substrate to product is catalytic with, respect to the concentration of the electronically excited catalyst species. It is non-catalytic in photons and therefore, continuous irradiation is required to maintain the catalytic cycle. The quantum yield of product formation Product is equal to or less than unity. Titanium dioxide photocatalysis is the most widely applied example of this type, with Ti02 representing the nominal catalyst that must be electronically excited by photon absorption with formation of the electron hole pair Ti02 (hvb + cb), being the active catalytic species (cf Fig. 3-17 and Fig. 5-9, reaction 1). The oxidation of substrates by the combination of UV/VIS radiation and an appropriate photocatalyst is often called photocatalytic oxidation (PCO). [Pg.121]


See other pages where Excitation photocatalysis is mentioned: [Pg.9]    [Pg.264]    [Pg.438]    [Pg.440]    [Pg.337]    [Pg.120]    [Pg.52]    [Pg.112]    [Pg.61]    [Pg.21]    [Pg.367]    [Pg.340]    [Pg.113]    [Pg.96]    [Pg.83]    [Pg.51]    [Pg.86]    [Pg.184]    [Pg.71]    [Pg.246]    [Pg.311]    [Pg.328]    [Pg.8]    [Pg.28]    [Pg.64]    [Pg.96]    [Pg.99]    [Pg.331]    [Pg.336]    [Pg.188]    [Pg.55]    [Pg.57]    [Pg.67]    [Pg.116]    [Pg.2]    [Pg.9]    [Pg.38]    [Pg.146]   
See also in sourсe #XX -- [ Pg.760 ]




SEARCH



Photocatalysis

© 2024 chempedia.info