Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Qualitative risk assessment evaluation

Performance-influencing factors analysis is an important part of the human reliability aspects of risk assessment. It can be applied in two areas. The first of these is the qualitative prediction of possible errors that could have a major impact on plant or personnel safety. The second is the evaluation of the operational conditions under which tasks are performed. These conditions will have a major impact in determining the probability that a particular error will be committed, and hence need to be systematically assessed as part of the quantification process. This application of PIFs will be described in Chapters 4 and 5. [Pg.105]

This application is similar to evaluation except that it may be performed as part of an overall qualitative or quantitative risk assessment. In the latter case, quantitative assessment techniques such as those described in Chapter 5 may be applied. [Pg.348]

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer potency or perform cancer risk assessments. Minimal risk levels (MRLs) for noncancer end points (if derived) and the end points from which they were derived are indicated and discussed. [Pg.253]

Evaluating risk to process plant building occupants can be accomplished through detailed qualitative and/or quantitative risk assessment. However, because of the large numbers of buildings and varying plant situations involved, these types of studies could be costly and time-consuming if applied in all cases, and should be reserved for those situations for which cost-effective solutions cannot otherwise be identified. [Pg.89]

This chapter provides general information for performing qualitative or quantitative risk assessments on buildings in process plants. For detailed guidance on risk assessment techniques, the user is referred to other CCPS books on this subject, including Reference 3, Guidelines for Hazard Evaluation Procedures, Second Edition, and Reference 4, Guidelines for Chemical Process Quantitative Risk Analysis. [Pg.104]

The dangerous properties of acute toxicity, irritation, corrosivity, sensitisation, repeated-dose toxicity and CMR are evaluated in terms of their potential toxic effects to workers, consumers and man exposed indirectly via the environment, based on the use for each stage in the lifecycle of the substance from which exposure can occur. Risk assessment is also required if there are reasonable grounds for concern for potential hazardous properties, e.g., from positive in vitro mutagenicity tests or structural alerts. The risk assessment involves comparing the estimated occupational or consumer exposure levels with the exposure levels at which no adverse effects are anticipated. This may be a quantitative risk assessment, based on the ratio between the two values, or a qualitative evaluation. The principles of human health risk assessment are covered in detail by Illing (a.30) and more briefly in Chapter 7 of (73). [Pg.18]

For acute toxicity, corrosivity and skin and eye irritation, values for the NOEL (or NOAEL or LOAEL) are not derived. Therefore, the only option is to determine whether the substance has an inherent capacity to cause such effects and to make a qualitative risk assessment to evaluate the likelihood of an adverse effect occurring in use. [Pg.19]

Risk assessment for any given environmental compartment is a comparison of the PEC with the PNEC, i.e., the PEC PNEC ratio. If this ratio is below 1, there is no immediate concern. If the ratio is above 1, the assessor decides on the basis of its value and other relevant factors what conclusions apply. If it has not been possible to derive a PEC/PNEC ratio, the risk assessment is a qualitative evaluation of the likelihood that an adverse effect will occur. [Pg.20]

In this paper I have tried to show that measurement of health benefits attributable to TSCA is not feasible. I hope that in doing so I have not belabored the obvious. For new chemicals and for most existing chemicals, prospective evaluation of health benefits to be achieved by various exposure controls will have to be based on extrapolation from microbial and animal data. However, while such extrapolation may be useful in a qualitative sense, quantitative risk assessment techniques involve considerable uncertainty, and in any case have not been developed for chronic effects other than cancer. [Pg.178]

An exposure assessment is the quantitative or qualitative evaluation of the amount of a substance that humans come into contact with and includes consideration of the intensity, frequency and duration of contact, the route of exposure (e.g., dermal, oral, or respiratory), rates (chemical intake or uptake rates), the resulting amount that actually crosses the boundary (a dose), and the amount absorbed (internal dose). Depending on the purpose of an exposure assessment, the numerical output may be an estimate of the intensity, rate, duration, and frequency of contact exposure or dose (the resulting amount that actually crosses the boundary). For risk assessments of chemical substances based on dose-response relationships, the output usually includes an estimate of dose (WHO/IPCS 1999). [Pg.315]


See other pages where Qualitative risk assessment evaluation is mentioned: [Pg.202]    [Pg.289]    [Pg.35]    [Pg.100]    [Pg.104]    [Pg.278]    [Pg.10]   
See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Assessment qualitative

Qualitative evaluation

Risk evaluation

Risk evaluation qualitative

© 2024 chempedia.info