Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene tetrachloro-, oxide

Mg+" reacts with alkyl halides in the gas phase via a range of substrate-dependent pathways Not all halides are reactive—examples of unreactive substrates include methyl chloride, vinyl chloride, trichloro and tetrachloro ethylene. Reaction with ethyl chloride proceeds via an elimination reaction (equation 18) followed by a displacement reaction (equation 19). For larger alkyl halides, such as isopropyl chloride, chloride abstraction also occurs (equation 20). For multiply halogenated substrates such as carbon tetrachloride, oxidative reactions occur (equations 21 and 22), although organometallic... [Pg.160]

In CC14 and tetrachloro ethylene, the products identified were phosphinic acid (1), phosphinylacetic acid (5), and methyl(octyl)(phenyl) phosphine oxide (3) (40, 41). But gas chromatography alone was not able to identify 50% of the unknown compounds. [Pg.458]

The catalytic cycle proposed for ethylene to acetaldehyde is shown in Fig. 8.2. The tetrachloro palladium anion 8.1 is used as the precatalyst. Conversion of 8.1 to 8.3 involves substitution of two chloride ligands by ethylene and water. Nucleophilic attack on coordinated ethylene leads to the formation of 8.4. The latter then undergoes substitution of another Cl- ligand. Conversion of 8.5 to 8.6 involves /3-hydride abstraction and coordination by vinyl alcohol. Intramolecular hydride attack to the coordinated vinyl group leads to the formation of 8.7. The latter eliminates acetaldehyde, proton, and CF and in the process is reduced to a palladium complex of zero oxidation state. [Pg.174]

TETRACHLORO- ETHYLENE CCl.CCI, Perchloroethylene, Perchlorethylene, TeCrachlorethylene, Perk Strong oxidizers, cbemkally active metals, such as barium, lithium, beryllium Not combustible ... [Pg.230]

The tetrachloroethylene is fluorinated with HF in vapor phase (320°C) in the presence of viz., chromium oxides, oxyfluorides or oxychlorides as catalyst to obtain HFC-125. It can also be obtained from dismutation of HCFC-124 and HCFC-123. The fluorination process has lower selectivity. In case of dismutation process, HCFC-124 has to be synthesized first by fluorination of tetrachloro ethylene. Fixed or flow bed reactors are used for the fluorination process. The catalyst can be regenerated by treatment with a mixture of air and HF followed by H treatment. [Pg.416]

Fig. 9.59 Plot of temperature of maximum spherulite growth rate, Tmax, against equilibrium melting temperature. I m, for indicated polymers. (1) isotactic poly(styrene) (a) (2) poly(tetramethyl-p-silphenylene siloxane) (b) (3) poly(cis-isoprene) (c) (4) poly(caproamide) (d,e) (5) poly(L-lactic acid) (f) (6) poly(phenylene sulfide) (g,h) (7) poly(R-epichlorohydrin), poly(S-epichlorohydrin), poly(I-RS-epichlorohydrin) (i) (8) poly(ethylene terephthalate) (j,k,l) (9) poly(aryl ether ether ketone) (m,n) (10) poly(ethylene-2,6-naphthalene dicarboxylate) (n) (11) poly(3-hydroxybutyrate) (o) (12) isotactic poly(methyl methacrylate) (q) (13) poly(dioxolane) (r) (14) New TPI poly(imide) (s) (15) poly(methylene oxide) (t) (16) poly(cis-butadiene) (u) (17) poly(propylene oxide) (v,w) (18) poly(imide) BPDA - - 134 APB (x) (19) poly(imide) BPDA - -C12 (x) (20) syndiotactic poly(propylene) (y) (21) poly(3-hydroxy valerate) (z) (22) poly(ethylene succinate) (aa) (23) poly(aryl ether ketone ketone) (bb) (24) poly(phenylene ether ether sulfide) (cc) (25) poly(tetramethylene isophtha-late) (dd) (26) poly(hexamethylene adipamide) (e,ee) (27) poly(tetrachloro-bis-phenol-A adipate) (fQ nylon 6-10 (ee). Fig. 9.59 Plot of temperature of maximum spherulite growth rate, Tmax, against equilibrium melting temperature. I m, for indicated polymers. (1) isotactic poly(styrene) (a) (2) poly(tetramethyl-p-silphenylene siloxane) (b) (3) poly(cis-isoprene) (c) (4) poly(caproamide) (d,e) (5) poly(L-lactic acid) (f) (6) poly(phenylene sulfide) (g,h) (7) poly(R-epichlorohydrin), poly(S-epichlorohydrin), poly(I-RS-epichlorohydrin) (i) (8) poly(ethylene terephthalate) (j,k,l) (9) poly(aryl ether ether ketone) (m,n) (10) poly(ethylene-2,6-naphthalene dicarboxylate) (n) (11) poly(3-hydroxybutyrate) (o) (12) isotactic poly(methyl methacrylate) (q) (13) poly(dioxolane) (r) (14) New TPI poly(imide) (s) (15) poly(methylene oxide) (t) (16) poly(cis-butadiene) (u) (17) poly(propylene oxide) (v,w) (18) poly(imide) BPDA - - 134 APB (x) (19) poly(imide) BPDA - -C12 (x) (20) syndiotactic poly(propylene) (y) (21) poly(3-hydroxy valerate) (z) (22) poly(ethylene succinate) (aa) (23) poly(aryl ether ketone ketone) (bb) (24) poly(phenylene ether ether sulfide) (cc) (25) poly(tetramethylene isophtha-late) (dd) (26) poly(hexamethylene adipamide) (e,ee) (27) poly(tetrachloro-bis-phenol-A adipate) (fQ nylon 6-10 (ee).

See other pages where Ethylene tetrachloro-, oxide is mentioned: [Pg.533]    [Pg.500]    [Pg.96]    [Pg.1153]    [Pg.500]    [Pg.5106]    [Pg.637]    [Pg.891]    [Pg.879]    [Pg.382]    [Pg.640]    [Pg.135]    [Pg.570]    [Pg.138]   
See also in sourсe #XX -- [ Pg.631 , Pg.633 ]




SEARCH



1.1.2.2- Tetrachloro

© 2024 chempedia.info