Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene reactions with Group

Lithiated indoles can be alkylated with primary or allylic halides and they react with aldehydes and ketones by addition to give hydroxyalkyl derivatives. Table 10.1 gives some examples of such reactions. Entry 13 is an example of a reaction with ethylene oxide which introduces a 2-(2-hydroxyethyl) substituent. Entries 14 and 15 illustrate cases of addition to aromatic ketones in which dehydration occurs during the course of the reaction. It is likely that this process occurs through intramolecular transfer of the phenylsulfonyl group. [Pg.95]

Halothiazoles are usually obtained from 2-aminothiazoles through the Sandmeyer reaction. Nevertheless, ammonolysis has sometimes proved useful for the preparation of 2-aminothiazole derivatives. Detweiler et al. (18) obtained 2-(u-pyridinylamino)thiazole (1) from 2-bromothiazole (Scheme 1). The reaction is easier if a nitro group occupies the 5-position of the thiazole ring (19-21). Ethylene diamine derivatives undergo this reaction with 2-haiothiazoles (22-24). [Pg.12]

Diols that bear two hydroxyl groups m a 1 2 or 1 3 relationship to each other yield cyclic acetals on reaction with either aldehydes or ketones The five membered cyclic acetals derived from ethylene glycol (12 ethanediol) are the most commonly encoun tered examples Often the position of equilibrium is made more favorable by removing the water formed m the reaction by azeotropic distillation with benzene or toluene... [Pg.722]

Formation and Elimination of Multiple Bond Functionalities. Reactions that involve the formation and elimination of multiple bond functional groups may significantly effect the color of residual lignin in bleached and unbleached pulps. The ethylenic and carbonyl groups conjugated with phenoHc or quinoid stmctures are possible components of chromophore or leucochromophore systems that contribute to the color of lignin. [Pg.139]

Butene. Commercial production of 1-butene, as well as the manufacture of other linear a-olefins with even carbon atom numbers, is based on the ethylene oligomerization reaction. The reaction can be catalyzed by triethyl aluminum at 180—280°C and 15—30 MPa ( 150 300 atm) pressure (6) or by nickel-based catalysts at 80—120°C and 7—15 MPa pressure (7—9). Another commercially developed method includes ethylene dimerization with the Ziegler dimerization catalysts, (OR) —AIR, where R represents small alkyl groups (10). In addition, several processes are used to manufacture 1-butene from mixed butylene streams in refineries (11) (see BuTYLENEs). [Pg.425]

Polyurethane foams are formed by reaction with glycerol with poly(propylene oxide), sometimes capped with poly(ethylene oxide) groups with a reaction product of trimethylolpropane and propylene oxide or with other appropriate polyols. A typical reaction sequence is shown below, in which HO—R—OH represents the diol. If a triol is used, a cross-linked product is obtained. [Pg.190]

A series of sorbitol-based nonionic surfactants are used ia foods as water-ia-oil emulsifiers and defoamers. They are produced by reaction of fatty acids with sorbitol. During reaction, cycHc dehydration as well as esterification (primary hydroxyl group) occurs so that the hydrophilic portion is not only sorbitol but also its mono- and dianhydride. The product known as sorbitan monostearate [1338-41 -6] for example, is a mixture of partial stearic and palmitic acid esters (sorbitan monopalmitate [26266-57-9]) of sorbitol, 1,5-anhydro-D-glucitol [154-58-8] 1,4-sorbitan [27299-12-3] and isosorbide [652-67-5]. Sorbitan esters, such as the foregoing and also sorbitan monolaurate [1338-39-2] and sorbitan monooleate [1338-43-8], can be further modified by reaction with ethylene oxide to produce ethoxylated sorbitan esters, also nonionic detergents FDA approved for food use. [Pg.480]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

QuaterniZation. Choline chloride [67-48-1] was prepared ia nearly quantitative yield by the reaction of trimethylamine [121-44-8] with ethylene chlorohydrin at 90—105°C and 981—1471 kPa (10—15 kg/cm ) pressure (44). Precursors to quaternary ammonium amphoteric surfactants have been made by reaction of ethylene chlorohydrin with tertiary amines containing a long chain fatty acid group (45). [Pg.73]

Polymerization. The reaction of ethylene oxide with a nucleophile introduces the hydroxyethyl group ... [Pg.453]

The indirect deactivation in 2-amino-4-chloroquinoline (187) requires vigorous conditions (potassium hydroxide in hot ethylene glycol, or boiling propanolic propoxide for 16 hr) to displace the chloro group, which is stable to aqueous alkali and to hydriodic acid. The direct deactivation in 5-amino-2-chloro-3-cyano-6-methyl-pyridine (188) prevents reaction with alkoxide ion under conditions which produce smooth reaction of the des-amino analog. [Pg.236]

More recent work in this series demonstrated that a carbonyl group can be interposed between the side-chaincarrying aromatic ring and the ethylene function with full retention of activity. Claisen condensation of benzoate with 2-tetralone affords the e-diketone Reaction of... [Pg.70]

While (Z)-l,2-bis(phenylsulfonyl)ethylene (140) does not add to dienes such as furan, cyclopentadiene, cyclo-octatetraene, indene and /f-naphthol, ( )-l,2-bis(phenylsulfonyl)ethylene (141) is more reactive and the reaction with furan proceeds at room temperature for 2 h to give the adduct in 95% yield. The reactivity of dienophiles having sulfonyl group in the [4 + 2]cycloaddition is shown in equation 10393,101. [Pg.791]

As previously discussed, solvents that dissolve cellulose by derivatization may be employed for further functionahzation, e.g., esterification. Thus, cellulose has been dissolved in paraformaldehyde/DMSO and esterified, e.g., by acetic, butyric, and phthalic anhydride, as well as by unsaturated methacrylic and maleic anhydride, in the presence of pyridine, or an acetate catalyst. DS values from 0.2 to 2.0 were obtained, being higher, 2.5 for cellulose acetate. H and NMR spectroscopy have indicated that the hydroxyl group of the methy-lol chains are preferably esterified with the anhydrides. Treatment of celliflose with this solvent system, at 90 °C, with methylene diacetate or ethylene diacetate, in the presence of potassium acetate, led to cellulose acetate with a DS of 1.5. Interestingly, the reaction with acetyl chloride or activated acid is less convenient DMAc or DMF can be substituted for DMSO [215-219]. In another set of experiments, polymer with high o -celliflose content was esterified with trimethylacetic anhydride, 1,2,4-benzenetricarboylic anhydride, trimellitic anhydride, phthalic anhydride, and a pyridine catalyst. The esters were isolated after 8h of reaction at 80-100°C, or Ih at room temperature (trimellitic anhydride). These are versatile compounds with interesting elastomeric and thermoplastic properties, and can be cast as films and membranes [220]. [Pg.138]

Replacement of an aromatic hydrogen by an aliphatic group is called alkylation and the attached group is called an alkyl group. Industrially, benzene is alkylated by reaction with an olehnic hydrocarbon such as ethylene to make ethylbenzene, or with propylene to produce isopropylbenzene. The replaced benzene hydrogen becomes part of the attached group. [Pg.77]

Ethylene oxide polymerization may be initiated similarly by substances (alcohols, amines, mercaptans) capable of generating a hydroxyl group through reaction with the monomer. In the presence of strongly acidic or basic catalysts, successive addition of ethylene oxide molecules proceeds rapidly in the following manner ... [Pg.59]


See other pages where Ethylene reactions with Group is mentioned: [Pg.122]    [Pg.239]    [Pg.83]    [Pg.362]    [Pg.361]    [Pg.245]    [Pg.347]    [Pg.430]    [Pg.453]    [Pg.237]    [Pg.377]    [Pg.345]    [Pg.14]    [Pg.723]    [Pg.19]    [Pg.51]    [Pg.3]    [Pg.90]    [Pg.740]    [Pg.746]    [Pg.234]    [Pg.106]    [Pg.512]    [Pg.91]    [Pg.232]    [Pg.239]    [Pg.24]    [Pg.24]    [Pg.26]    [Pg.294]    [Pg.694]    [Pg.870]    [Pg.288]   


SEARCH



Ethylene reaction with

Ethylene reaction with amino groups

Ethylene reactions

Ethylenic groups

© 2024 chempedia.info