Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene electrolytic oxidation

To oxidize ethylene to acetaldehyde technically, two major approaches seem feasible (a) vapor-phase heterogeneous catalysis, and (b) liquid-phase homogeneous catalysis. The most pertinent references on the vapor-phase process are summarized in Table VI. However, neither this approach nor the electrolytic oxidation of ethylene (14) appears to have gained any commercial importance. Liquid-phase homogeneous catalysis is the approach practiced commercially, and this is understood when one talks about the Wacker process. The latter has been carried out in two principal ways ... [Pg.65]

Similarly, oxidation of ethylene can occur above its E° (3-13,28,29). With an oxygen counterelectrode, conventional electrolytic oxidation starts when the anode potential becomes more positive than the cathode. Halogenation of hydrocarbons is also possible electrogeneratively, above E°, on appropriate electrocatalytic anodes (47, 50, 51). [Pg.230]

Dalbay N, Kadirgan F (1991) Electrolytically Co-deposited platinum palladium electrodes and their electrocatalytic activity for ethylene-glycol oxidation - a synergistic effect. Electrochim Acta 36(2) 353-356... [Pg.126]

Ethylene glycol can be produced by an electrohydrodimerization of formaldehyde (16). The process has a number of variables necessary for optimum current efficiency including pH, electrolyte, temperature, methanol concentration, electrode materials, and cell design. Other methods include production of valuable oxidized materials at the electrochemical cell s anode simultaneous with formation of glycol at the cathode (17). The compound formed at the anode maybe used for commercial value direcdy, or coupled as an oxidant in a separate process. [Pg.359]

Poly(ethylene oxide) associates in solution with certain electrolytes (48—52). For example, high molecular weight species of poly(ethylene oxide) readily dissolve in methanol that contains 0.5 wt % KI, although the resin does not remain in methanol solution at room temperature. This salting-in effect has been attributed to ion binding, which prevents coagulation in the nonsolvent. Complexes with electrolytes, in particular lithium salts, have received widespread attention on account of the potential for using these materials in a polymeric battery. The performance of soHd electrolytes based on poly(ethylene oxide) in terms of ion transport and conductivity has been discussed (53—58). The use of complexes of poly(ethylene oxide) in analytical chemistry has also been reviewed (59). [Pg.342]

Anodic Oxidation. The abiUty of tantalum to support a stable, insulating anodic oxide film accounts for the majority of tantalum powder usage (see Thin films). The film is produced or formed by making the metal, usually as a sintered porous pellet, the anode in an electrochemical cell. The electrolyte is most often a dilute aqueous solution of phosphoric acid, although high voltage appHcations often require substitution of some of the water with more aprotic solvents like ethylene glycol or Carbowax (49). The electrolyte temperature is between 60 and 90°C. [Pg.331]

A second class of important electrolytes for rechargeable lithium batteries are soHd electrolytes. Of particular importance is the class known as soHd polymer electrolytes (SPEs). SPEs are polymers capable of forming complexes with lithium salts to yield ionic conductivity. The best known of the SPEs are the lithium salt complexes of poly(ethylene oxide) [25322-68-3] (PEO), —(CH2CH20) —, and poly(propylene oxide) [25322-69-4] (PPO) (11—13). Whereas a number of experimental battery systems have been constmcted using PEO and PPO electrolytes, these systems have not exhibited suitable conductivities at or near room temperature. Advances in the 1980s included a new class of SPE based on polyphosphazene complexes suggesting that room temperature SPE batteries may be achievable (14,15). [Pg.582]

Electrochemical Process. Several patents claim that ethylene oxide is produced ia good yields ia addition to faradic quantities of substantially pure hydrogen when water and ethylene react ia an electrochemical cell to form ethylene oxide and hydrogen (206—208). The only raw materials that are utilized ia the ethylene oxide formation are ethylene, water, and electrical energy. The electrolyte is regenerated in situ ie, within the electrolytic cell. The addition of oxygen to the ethylene is activated by a catalyst such as elemental silver or its compounds at the anode or its vicinity (206). The common electrolytes used are water-soluble alkah metal phosphates, borates, sulfates, or chromates at ca 22—25°C (207). The process can be either batch or continuous (see Electrochemicalprocessing). [Pg.461]

Figure 11.9. Conductivity vs temperature plot for two ionically conducting crystals and for a polymer electrolyte, LiTf-aPtO40, which is based on amorphous poly(ethylene) oxide (after Ratner... Figure 11.9. Conductivity vs temperature plot for two ionically conducting crystals and for a polymer electrolyte, LiTf-aPtO40, which is based on amorphous poly(ethylene) oxide (after Ratner...
The interfacial phenomena in LiX/PE systems were studied extensively by Scro-sati and co-workers [3, 53, 130]. They found that the high-frequency semicircle in the impedance spectrum of LiC104/ P(EO)8 electrolyte (EO = ethylene oxide),... [Pg.448]

Figure 1. Temperature variation of the conductivity for a cross-section of polymer electrolytes. PESc, poly (ethylene succinate) PEO, polyethylene oxide) PPO, polypropylene oxide) PEI, poly(ethyleneimine) MEEP, poly(methoxyethoxy-ethoxyphosphazene) aPEO, amorphous methoxy-linked PEO PAN, polyacrylonitrile PC, propylene carbonate EC, ethylene carbonate. Figure 1. Temperature variation of the conductivity for a cross-section of polymer electrolytes. PESc, poly (ethylene succinate) PEO, polyethylene oxide) PPO, polypropylene oxide) PEI, poly(ethyleneimine) MEEP, poly(methoxyethoxy-ethoxyphosphazene) aPEO, amorphous methoxy-linked PEO PAN, polyacrylonitrile PC, propylene carbonate EC, ethylene carbonate.
Since the realization in the early 1980s that poly (ethylene oxide) could serve as a lithium-ion conductor in lithium batteries, there has been continued interest in polymer electrolyte batteries. Conceptually, the electrolyte layer could be made very thin (5im ) and so provide higher energy density. Fauteux et al. [31] have recently reviewed the present state of polymer elec-... [Pg.558]

M. Stoukides, and C.G. Vayenas, Solid Electrolyte Aided Study of the Oxidation of Ethylene Oxide on Silver, J. Catal. 64, 18-28 (1980). [Pg.183]

The classical example of a soUd organic polymer electrolyte and the first one found is the poly(ethylene oxide) (PEO)/salt system [593]. It has been studied extensively as an ionically conducting material and the PEO/hthium salt complexes are considered as reference polymer electrolytes. However, their ambient temperature ionic conductivity is poor, on the order of 10 S cm, due to the presence of crystalUne domains in the polymer which, by restricting polymer chain motions, inhibit the transport of ions. Consequently, they must be heated above about 80 °C to obtain isotropic molten polymers and a significant increase in ionic conductivity. [Pg.202]

Park CW, Ryu HS, Kim KW, Ahn JH, Lee JY, Ahn HJ (2007) Discharge properties of all-solid sodium-sulfur battery using poly (ethylene oxide) electrolyte. J Power Sources 165 450-454... [Pg.346]

Skotheim et al. [286, 357, 362] have performed in situ electrochemistry and XPS measurements using a solid polymer electrolyte (based on poly (ethylene oxide) (PEO) [363]), which provides a large window of electrochemical stability and overcomes many of the problems associated with UHV electrochemistrty. The use of PEO as an electrolyte has also been investigated by Prosperi et al. [364] who found slow diffusion of the dopant at room temperature as would be expected, and Watanabe et al. have also produced polypyrrole/solid polymer electrolyte composites [365], The electrochemistry of chemically prepared polypyrrole powders has also been investigated using carbon paste electrodes [356, 366] with similar results to those found for electrochemically-prepared material. [Pg.47]


See other pages where Ethylene electrolytic oxidation is mentioned: [Pg.379]    [Pg.488]    [Pg.35]    [Pg.376]    [Pg.119]    [Pg.438]    [Pg.53]    [Pg.603]    [Pg.1191]    [Pg.246]    [Pg.258]    [Pg.225]    [Pg.237]    [Pg.245]    [Pg.34]    [Pg.71]    [Pg.449]    [Pg.499]    [Pg.501]    [Pg.602]    [Pg.277]    [Pg.99]    [Pg.156]    [Pg.394]    [Pg.470]    [Pg.470]    [Pg.207]    [Pg.332]    [Pg.387]    [Pg.552]    [Pg.1197]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Composite polymer electrolytes based on poly(ethylene oxide) and non-ionic fillers

Electrolytic oxidation

Electrolytic oxides

© 2024 chempedia.info