Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene coefficients

Figure 3-4. Fugacity coefficients for the system ethylene-ethanol. ... Figure 3-4. Fugacity coefficients for the system ethylene-ethanol. ...
It resembles polytetrafiuoroethylene and fiuorinated ethylene propylene in its chemical resistance, electrical properties, and coefficient of friction. Its strength, hardness, and wear resistance are about equal to the former plastic and superior to that of the latter at temperatures above 150°C. [Pg.1016]

Copolymers. Although many copolymers of ethylene can be made, only a few have been commercially produced. These commercially important copolymers are Hsted in Table 4, along with their respective reactivity coefficient (see Co polymers. The basic equation governing the composition of the copolymer is as follows, where and M2 are the monomer feed compositions, and r2 ate the reactivity ratios (6). [Pg.375]

Permeation in the vinyUdene chloride copolymer and the polyolefins is not affected by humidity the permeability and diffusion coefficient in the ethylene—vinyl alcohol copolymer can be as much as 1000 times greater with high humidity (14—17). [Pg.492]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

Consider now the reaction between butadiene and ethylene, where both 2-1-2 and 4-1-2 reaction modes are possible. The qualitative appearances of the butadiene HOMO and ethylene LUMO are given in Figure 15.4. The MO coefficients are given as a, b and c, where a > b > c. [Pg.349]

The distribution coefficient for n-heptane (solute i) distributed between ethylene glycol (solvent 1) and benzene (solvent 2) at 25°C is given as the ratio of mass fractions... [Pg.350]

From the results of other authors should be mentioned the observation of a similar effect, e.g. in the oxidation of olefins on nickel oxide (118), where the retardation of the reaction of 1-butene by cis-2-butene was greater than the effect of 1-butene on the reaction of m-2-butene the ratio of the adsorption coefficients Kcia h/Kwas 1.45. In a study on hydrogenation over C03O4 it was reported (109) that the reactivities of ethylene and propylene were nearly the same (1.17 in favor of propylene), when measured separately, whereas the ratio of adsorption coefficients was 8.4 in favor of ethylene. This led in the competitive arrangement to preferential hydrogenation of ethylene. A similar phenomenon occurs in the catalytic reduction of nitric oxide and sulfur dioxide by carbon monoxide (120a). [Pg.43]

Here Ceq is the ethylene concentration equilibrium to the concentration in a gaseous phase, Kp the propagation rate constant, N the concentration of the propagation centers on the catalyst surface, Dpe the diffusion coefficient of ethylene through the polymer film, G the yield of polymer weight unit per unit of the catalyst and y0at, ype are the specific gravity of the catalyst and polyethylene. [Pg.182]

The use of ethylene dichloride as solvent was extended by Brown et al. 11 to the determination of the kinetics of benzoylation of other aromatics, using benzoyl chloride catalysed by aluminium chloride, and the data are included in Table 109 the relative reactivities are thus benzene, 1.0 toluene, 117 o-xylene, 1,393 m-xylene, 3,960 and p-xylene, 243 and these values are closely similar to those obtained with nitrobenzene as solvent. No exact comparison of the coefficients with those of Corriu et al. 16 is possible because of the different temperatures employed, but the rates appear to be comparable for the two sets of data after allowing for reasonable temperature dependencies. [Pg.180]

Phenomenological evidence for the participation of ionic precursors in radiolytic product formation and the applicability of mass spectral information on fragmentation patterns and ion-molecule reactions to radiolysis conditions are reviewed. Specific application of the methods in the ethylene system indicates the formation of the primary ions, C2H4+, C2i/3+, and C2H2+, with yields of ca. 1.5, 1.0, and 0.8 ions/100 e.v., respectively. The primary ions form intermediate collision complexes with ethylene. Intermediates [C4iZ8 + ] and [CJH7 + ] are stable (<dissociation rate constants <107 sec.-1) and form C6 intermediates which dissociate rate constants <109 sec. l). The transmission coefficient for the third-order ion-molecule reactions appears to be less than 0.02, and such inefficient steps are held responsible for the absence of ionic polymerization. [Pg.249]

FIGURE 31.8 Change in the coefficient of friction of modified dicumyl peroxide/ethylene-propylene-diene monomer (DCPD/EPDM) with the concentration of trimethylolpropane triacrylate (TMPTA) at a fixed irradiation dose of 100 kGy. (G) Surface modified with 100 kGy, (A) Bulk modified with 100 kGy dose, ( ) Control EPDM rubber. (Erom Sen Majumder, P. and Bhowmick, A.K., Wear, 221, 15, 1998. With permission.)... [Pg.890]

Subsequent work by Johansson and Lofroth [183] compared this result with those obtained from Brownian dynamics simulation of hard-sphere diffusion in polymer networks of wormlike chains. They concluded that their theory gave excellent agreement for small particles. For larger particles, the theory predicted a faster diffusion than was observed. They have also compared the diffusion coefficients from Eq. (73) to the experimental values [182] for diffusion of poly(ethylene glycol) in k-carrageenan gels and solutions. It was found that their theory can successfully predict the diffusion of solutes in both flexible and stiff polymer systems. Equation (73) is an example of the so-called stretched exponential function discussed further later. [Pg.579]

The simple harmonic oscillator picture of a vibrating molecule has important implications. First, knowing the frequency, one can immediately calculate the force constant of the bond. Note from Eq. (11) that k, as coefficient of r, corresponds to the curvature of the interatomic potential and not primarily to its depth, the bond energy. However, as the depth and the curvature of a potential usually change hand in hand, the infrared frequency is often taken as an indicator of the strength of the bond. Second, isotopic substitution can be useful in the assignment of frequencies to bonds in adsorbed species, because frequency shifts due to isotopic substitution (of for example D for H in adsorbed ethylene, or OD for OH in methanol) can be predicted directly. [Pg.156]

Figure 7.5. Sticking coefficients along with differential heats of adsorption as measured by microcalorimetry for ethylene and acetylene on Rh(lOO). [Adapted from R. Kose, W.A. Brown and D.A. King, Chem. Rhys. Lett. 311 (1999) 109.]... Figure 7.5. Sticking coefficients along with differential heats of adsorption as measured by microcalorimetry for ethylene and acetylene on Rh(lOO). [Adapted from R. Kose, W.A. Brown and D.A. King, Chem. Rhys. Lett. 311 (1999) 109.]...
Chemical methods for structure determination in diene pol3 mers have in large measure been superseded by infrared absorption techniques. By comparing the infrared absorption spectra of polybutadiene and of the olefins chosen as models whose ethylenic structures correspond to the respective structural units, it has been possible to show that the bands occurring at 910.5, 966.5, and 724 cm. are characteristic of the 1,2, the mns-1,4, and the m-1,4 units, respectively. Moreover, the proportion of each unit may be determined within 1 or 2 percent from measurements of the absorption intensity in each band. The extinction coefficients characteristic of each structure must, of course, be known these may be assigned from intensity measurements on model compounds. Since the proportions of the various units depend on the rates of competitive reactions, their percentages may be expected to vary with the polymerization temperature. The 1,2 unit occurs to the extent of 18 to 22 percent of the total, almost independent of the temperature, in free-radical-polymerized (emulsion or mass) poly butadiene. The ratio of trans-1,4 to cfs-1,4, however,... [Pg.239]

Figure8.9 Temperature atthe focusing point ofthe NIR laserlight measured by the present method for ethylene glycol (a), ethanol (b), water (c), and heavy water (d). The temperature elevation coefficients for these solutions are summarized in Table 8.1... Figure8.9 Temperature atthe focusing point ofthe NIR laserlight measured by the present method for ethylene glycol (a), ethanol (b), water (c), and heavy water (d). The temperature elevation coefficients for these solutions are summarized in Table 8.1...

See other pages where Ethylene coefficients is mentioned: [Pg.59]    [Pg.855]    [Pg.186]    [Pg.201]    [Pg.285]    [Pg.84]    [Pg.466]    [Pg.191]    [Pg.488]    [Pg.1125]    [Pg.1319]    [Pg.47]    [Pg.48]    [Pg.116]    [Pg.262]    [Pg.303]    [Pg.1250]    [Pg.187]    [Pg.183]    [Pg.177]    [Pg.179]    [Pg.253]    [Pg.261]    [Pg.265]    [Pg.299]    [Pg.584]    [Pg.272]    [Pg.273]    [Pg.93]    [Pg.218]    [Pg.230]   
See also in sourсe #XX -- [ Pg.6 , Pg.59 , Pg.60 ]




SEARCH



Absorption coefficient, ethylene

Ethylene diffusion coefficients

Ethylene glycol viscosity coefficients

Ethylene second virial coefficients

Property Data and Coefficients for Ethylene

© 2024 chempedia.info