Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers substitution reaction

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

Substitution Reactions on Side Chains. Because the benzyl carbon is the most reactive site on the propanoid side chain, many substitution reactions occur at this position. Typically, substitution reactions occur by attack of a nucleophilic reagent on a benzyl carbon present in the form of a carbonium ion or a methine group in a quinonemethide stmeture. In a reversal of the ether cleavage reactions described, benzyl alcohols and ethers may be transformed to alkyl or aryl ethers by acid-catalyzed etherifications or transetherifications with alcohol or phenol. The conversion of a benzyl alcohol or ether to a sulfonic acid group is among the most important side chain modification reactions because it is essential to the solubilization of lignin in the sulfite pulping process (17). [Pg.139]

For reaction with hydrogen haUdes, the substitution reaction with haUde ion easily occurs when a cuprous or cupric compound is used as the catalyst (23) and yields a halogenated aHyl compound. With a cuprous compound as the catalyst at 18 °C, the reaction is completed in 6 h. Zinc chloride is also a good catalyst (24), but a by-product, diaHyl ether, is formed. [Pg.73]

Nucleophilic Substitution Reactions. Many of the transformations reali2ed through Michael additions to quiaones can also be achieved usiag nucleophilic substitution chemistry. In some iastances the stereoselectivity can be markedly improved ia this fashion (100), eg, ia the reaction of ben2enethiol with esters (R = CH C O) and ethers (R = 3) 1,4-naphthoquiaones. 2-Bromo-5-acetyloxy-l,4-naphthoquiQone [77189-69-6J, R = Br, yields 75% of 2-thiophenyl-5-acetyloxy-l,4-naphthoquinone [71700-93-1], R = SC H. 3-Bromo-5-methoxy-1,4-naphthoquinone [69833-10-9], R = Br, yields 82% of 3-thiophenyl-5-methoxy-l,4-naphthoquinone [112740-62-2] R = SC H. ... [Pg.416]

Methyl bromide slowly hydrolyzes in water, forming methanol and hydrobromic acid. The bromine atom of methyl bromide is an excellent leaving group in nucleophilic substitution reactions and is displaced by a variety of nucleophiles. Thus methyl bromide is useful in a variety of methylation reactions, such as the syntheses of ethers, sulfides, esters, and amines. Tertiary amines are methylated by methyl bromide to form quaternary ammonium bromides, some of which are active as microbicides. [Pg.294]

Substitution Reactions. The chemistry at alpha positions hinges on the fact that an aHyUc hydrogen is easy to abstract because of the resonance stmctures that can be estabUshed with the neighboring double bond. The aHyUc proton is easier to abstract than one on a tertiary carbon these reactions are important in the formation of alkoxybutenes (ethers). [Pg.364]

Methyl chloride can be converted iato methyl iodide or bromide by refluxing ia acetone solution ia the presence of sodium iodide or bromide. The reactivity of methyl chloride and other aUphatic chlorides ia substitution reactions can often be iacteased by usiag a small amount of sodium or potassium iodide as ia the formation of methyl aryl ethers. Methyl chloride and potassium phthalimide do not readily react to give /V-methy1phtha1imide unless potassium iodide is added. The reaction to form methylceUulose and the Williamson synthesis to give methyl ethers are cataly2ed by small quantities of sodium or potassium iodide. [Pg.513]

Ring expansion of haloalkyloxiranes provides a simple two-step procedure for the preparation of azetidin-3-ols (Section 5.09.2.3.2(f)) which can be extended to include 3-substituted ethers and O-esters (79CRV331 p. 341). The availability of 3-hydroxyazetidines provides access to a variety of 3-substituted azetidines, including halogeno, amino and alkylthio derivatives, by further substitution reactions (Section 5.09.2.2.4). Photolysis of phenylacylamines has also found application in the formation of azetidin-3-ols (33). Not surprisingly, few 2-0-substituted azetidines are known. The 2-methoxyazetidine (57) has been produced by an internal displacement, where the internal amide ion is generated by nucleophilic addition to an imine. [Pg.246]

Sodium acetate reacts with /p-nitrophenyl benzoates to give mixed anhydrides if the reaction is conducted in a polar aprotic solvent in the presence of a crown ether. The reaction is strongly accelerated by quartemary nitrogen groups substituted at the orthc position. Explain the basis for the enhanced reactivity of these compounds. [Pg.500]

It was noted early by Smid and his coworkers that open-chained polyethylene glycol type compounds bind alkali metals much as the crowns do, but with considerably lower binding constants. This suggested that such materials could be substituted for crown ethers in phase transfer catalytic reactions where a larger amount of the more economical material could effect the transformation just as effectively as more expensive cyclic ethers. Knbchel and coworkers demonstrated the application of open-chained crown ether equivalents in 1975 . Recently, a number of applications have been published in which simple polyethylene glycols are substituted for crowns . These include nucleophilic substitution reactions, as well as solubilization of arenediazonium cations . Glymes have also been bound into polymer backbones for use as catalysts " " . [Pg.312]

It may not be appropriate to compare the thermal stability characteristics of VC/VAc copolymer to that of a VC homopolymer (PVC). The copolymerization would involve different kinetics and mechanism as compared to homopolymerization resulting structurally in quite different polymers. Hence, copolymerization of VC with VAc cannot be regarded as a substitution of chlorines in PVC by acetate groups. To eliminate the possibility of these differences Naqvi [45] substituted chlorines in PVC by acetate groups, using crown ethers (18-crown-6) to solubilize potassium acetate in organic solvents, and studied the thermal stability of the modified PVC. Following is the mechanism of the substitution reaction ... [Pg.329]

As the preceding examples indicate, the yields of these SOCI2 and PBr3 reactions are generally high, and other functional groups such as ethers, carbonyls, and aromatic tings don t usually interfere. We ll look at the mechanisms of these substitution reactions in the next chapter. [Pg.345]

Acidic ether cleavages are typical nucleophilic substitution reactions, either SN1 or Sn2 depending on the structure of the substrate. Ethers with only primary and secondary alkyl groups react by an S 2 mechanism, in which or Br attacks the protonated ether at the less hindered site. This usually results in a selective cleavage into a single alcohol and a single alkyl halide. For example, ethyl isopropyl ether yields exclusively isopropyl alcohol and iodoethane on cleavage by HI because nucleophilic attack by iodide ion occurs at the less hindered primary site rather than at the more hindered secondary site. [Pg.658]

The diethoxy derivative 4 can be transformed to the monolactame 5 by stirring an ethereal solution with silica gel, or used in substitution reactions to afford other derivatives, e g. JV,Ar,jV, jV -tetraethyl-4,8-dimethyl-l, 3,5,7-tetrazocine-2,6-diamine (6).23-24... [Pg.560]

The nucleophilic aromatic substitution reaction for the synthesis of poly(arylene ether ketone)s is similar to that of polysulfone, involving aromatic dihalides and aromatic diphenolates. Since carbonyl is a weaker electron-withdrawing group titan sulfonyl, in most cases, difluorides need to be used to afford high-molecular-weight polymers. Typically potassium carbonate is used as a base to avoid the... [Pg.340]

The Ullman reaction has long been known as a method for the synthesis of aromatic ethers by the reaction of a phenol with an aromatic halide in the presence of a copper compound as a catalyst. It is a variation on the nucleophilic substitution reaction since a phenolic salt reacts with the halide. Nonactivated aromatic halides can be used in the synthesis of poly(arylene edier)s, dius providing a way of obtaining structures not available by the conventional nucleophilic route. The ease of halogen displacement was found to be the reverse of that observed for activated nucleophilic substitution reaction, that is, I > Br > Cl F. The polymerizations are conducted in benzophenone with a cuprous chloride-pyridine complex as a catalyst. Bromine compounds are the favored reactants.53,124 127 Poly(arylene ether)s have been prepared by Ullman coupling of bisphenols and... [Pg.346]

Smith, Jason A., 431 Sn2+ compounds, 233 Sn4+ compounds, 232 SNAr reaction. See also Nucleophilic aromatic substitution reaction poly(arylene ether sulfone) synthesis via, 336-340... [Pg.601]

Substitution reactions where the nucleophilic group was a single free hydroxyl group of a saccharide, the other ones being protected, were also studied. The expected ether-amides or glycoside-amides were obtained from... [Pg.162]

A complex reaction takes place when dichlorobis(triphenylphosphine)-nickel (5) is treated with excess methylmagnesium bromide in ether. Detectable amounts of benzene, toluene, and biphenyl are formed, together with mixed phosphines. Nickel appears to be necessary for the substitution reaction since triphenylphosphine alone does not react with the Grignard reagent. [Pg.2]

Alternatively, the Sn2 nucleophilic substitution reaction between alcohols (phenols) and organic halides under basic conditions is the classical Williamson ether synthesis. Recently, it was found that water-soluble calix[n]arenes (n = 4, 6, 8) containing trimethylammonium groups on the upper rim (e.g., calix[4]arene 5.2) were inverse phase-transfer catalysts for alkylation of alcohols and phenols with alkyl halides in aqueous NaOH solution to give the corresponding alkylated products in good-to-high yields.56... [Pg.154]

Crown Ethers Nucleophilic Substitution Reactions in Relatively Nonpolar Aprotic Solvents by Phase-Transfer Catalysis... [Pg.449]

In most of these nuclear substitution reactions, kojic acid did indeed react as a phenol. An exception was the reaction with acrylonitrile, as noted by Woods.97 Phenols usually form cyanoethy ethers under similar conditions, but the reaction of acrylonitrile with ketones leads to substitution of the a-hydrogen atom.100 This consideration points to a predominance of the diketo form of the kojate anion (LXIV) in these reactions. There are many good reasons for believing that, in the formation of all these derivatives, substitution actually takes place at C6 it should, however, be pointed out that this assumption still lacks confirmation by synthesis or by appropriate degradation studies. The nuclear mono-substitution products of kojic acid are listed in Table IV, and their functional derivatives in Tables V and VI. [Pg.173]

The scope of the acid-catalyzed formation of C-glycosyl compounds has been greatly expanded with the finding that enol ethers and ketene acetals can be used as the carbon source in electrophilic substitution reactions at the anomeric center.126 Treatment of 198 with the trimethylsilyl enol ether derived from cyclohexanone, in the presence of stannic chloride, led to 2-(2,3,5-tri-0-benzoyl-/J-D-ribofuranosyl)cyelohexanone (206), presumably by way of the inter-... [Pg.160]


See other pages where Ethers substitution reaction is mentioned: [Pg.72]    [Pg.272]    [Pg.69]    [Pg.81]    [Pg.9]    [Pg.730]    [Pg.156]    [Pg.10]    [Pg.49]    [Pg.606]    [Pg.216]    [Pg.264]    [Pg.56]    [Pg.382]    [Pg.154]    [Pg.153]    [Pg.58]    [Pg.234]    [Pg.148]    [Pg.725]    [Pg.630]    [Pg.440]    [Pg.31]    [Pg.186]    [Pg.391]    [Pg.52]   
See also in sourсe #XX -- [ Pg.269 ]




SEARCH



Ethers from nucleophilic substitution reaction

Ethers, substituted

Nucleophilic Substitution Reactions of Ethers

Nucleophilic aliphatic substitution cyclic ether reactions

Nucleophilic substitution reactions ether synthesis

Nucleophilic substitution reactions ether with strong acid

Reaction with Substituted Vinyl Ethers

Vinyl ethers, substitution reactions

© 2024 chempedia.info