Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers intramolecular cycloaddition reactions

Intramolecular cycloaddition reactions are possible in the absence of electron-withdrawing substituents on the dienophile, although more-vigorous conditions are normally required. Cycloaddition of the triene 87 at 200 °C gave, after hydrolysis of the silyl ether, a mixture of the diastereomeric rra s-fused ring systems 88, which were converted into the eudesmane sesquiterpene 89 (3.76). ... [Pg.195]

The hetero Diels-Alder [4+2] cycloaddition (HDA reaction) is a very efficient methodology to perform pyrimidine-to-pyridine transformations. Normal (NHDA) and Inverse (IHDA) cycloaddition reactions, intramolecular as well as intermolecular, are reported, although the IHDA cycloadditions are more frequently observed. The NHDA reactions require an electron-rich heterocycle, which reacts with an electron-poor dienophile, while in the IHDA cycloadditions a n-electron-deficient heterocycle reacts with electron-rich dienophiles, such as 0,0- and 0,S-ketene acetals, S,S-ketene thioacetals, N,N-ketene acetals, enamines, enol ethers, ynamines, etc. [Pg.51]

For the synthesis of estradiol methyl ether 4-319, the cydobutene derivative 4-317 was heated to give the orthoquinonedimethane 4-318 which cydized in an intramolecular Diels-Alder reaction [109]. The thermally permitted, conrotatory elec-trocyclic ring-opening of benzocyclobutenes [110] with subsequent intramolecular cycloaddition also allowed the formation of numerous complex frameworks (Scheme 4.70). [Pg.326]

Intramolecular [4+2]-cycloaddition reactions, which involve base-induced isomerization of a propargyl ether to an allenyl ether, have been extensively studied. Treatment of 157 with a base caused an intramolecular Diels-Alder reaction of the intermediate allenyl ether to give tricyclic compounds 158 [131]. An asymmetric synthesis of benzofuran lactone 159 was achieved by an analogous procedure [132],... [Pg.778]

Confalone et al. (85) also made use of an intramolecular cycloaddition step in the construction of a range of tri- and tetracyclic products. Phenyl allyl ethers, of the type shown in Scheme 3.94, underwent dehydrative condensation with the requisite amine to furnish the intermediate ylides, which suffered cycloaddition resulting in 285 and 286 in essentially quantitative yield. The ratio of cis/trans fused products was in the range of 10 1. Such a process has been developed to construct the alkaloid (+ / ) sceletium A4 by reaction of the intermediate 287 with amine 288 via the cycloaddition protocol already developed, followed by further chemical manipulation, in an efficient five step synthesis (Scheme 3.94). [Pg.231]

Second, the formation of the diazobenzazocine derivatives 264a-e represents an unprecedented reaction for intramolecular 1,3-dipolar cycloaddition reactions of diazo compounds. Note that diazo compounds such as 247a (305) and 248 (307) also give bridged diazabicyclo[n.2.1]alkenes rather than fused diazabi-cyclo[ .3.0]aUcenes upon treatment with Bp3-etherate, but these transformations... [Pg.596]

Intramolecular cycloaddition of fV-benzyl-substituted 3-O-allylhexose nitrones furnishes chiral oxepane derivatives. The regioselectivity of the cycloaddition depends on several factors such as (1) the structural nature of the nitrone, (2) substitution and stereochemistry at 3-C of the carbohydrate backbone, and (3) substitution at the terminus of the O-allyl moiety. A mixture of an oxepane and a pyran is formed in the intramolecular oxime olefin cycloaddition of a 3-O-allyl carbohydrate-derived oxime <2003T4623>. The highly stereoselective synthesis of oxepanes proceeds by intramolecular nitrone cycloaddition reactions on sugar-derived methallyl ethers <2003TA3899>. [Pg.79]

Chiral alkoxy allenes derived from 1,3-alkylidene-L-erythritol and -D-threitol have been used in cycloaddition reactions to provide the 4-substituted /3-lactams 418 (R = Me, Ph). Intramolecular alkylation at nitrogen was achieved by the action of potassium carbonate and tetrabutylammonium bromide in dry acetonitrile. The absolute stereochemistry of the product 419 (R = Me, Ph) was assigned on the basis of the CD helicity rule (see Section 2.04.3.5) and NMR spectroscopy. The [2+2] cycloaddition of CSI to threitol vinyl ethers was found to have low stereoselectivity in contrast to the findings with erythritol derivatives <2004CH414, 2005EJ0429>. [Pg.296]

In intermolecular PET processes, radical ions are formed either as close pairs or as free species from neutral molecules (Sch. 1) [2,6]. Most commonly, carbonyl compounds or related derivatives as for example enol ethers, cyclopropyl ketones, and siloxycyclopropanes are used for intramolecular cyclization reactions. With the exception of cycloadditions the ring-building key step is always an intramolecular bond formation. In PET... [Pg.270]

Among the carbonylative cycloaddition reactions, the Pauson-Khand (P-K) reaction, in which an alkyne, an alkene, and carbon monoxide are condensed in a formal [2+2+1] cycloaddition to form cyclopentenones, has attracted considerable attention [3]. Significant progress in this reaction has been made in this decade. In the past, a stoichiometric amount of Co2(CO)8 was used as the source of CO. Various additive promoters, such as amines, amine N-oxides, phosphanes, ethers, and sulfides, have been developed thus far for a stoichiometric P-K reaction to proceed under milder reaction conditions. Other transition-metal carbonyl complexes, such as Fe(CO)4(acetone), W(CO)5(tetrahydrofuran), W(CO)5F, Cp2Mo2(CO)4, where Cp is cyclopentadienyl, and Mo(CO)6, are also used as the source of CO in place of Co2(CO)8. There has been significant interest in developing catalytic variants of the P-K reaction. Rautenstrauch et al. [4] reported the first catalytic P-K reaction in which alkenes are limited to reactive alkenes, such as ethylene and norbornene. Since 1994 when Jeong et al. [5] reported the first catalytic intramolecular P-K reaction, most attention has been focused on the modification of the cobalt catalytic system [3]. Recently, other transition-metal complexes, such as Ti [6], Rh [7], and Ir complexes [8], have been found to be active for intramolecular P-K reactions. [Pg.175]

Metal-catalyzed [4- -2] and [5- -2] cycloadditions devoped by Wender and Ttost are powerful transformations for the construction of polycyclic ring skeletons. Their intramolecular versions incorporating an ether group in the tether lead to oxygen heterocycles in good yields. A rhodium N-heterocyclic carbene catalyst has been shown to be particularly effective in such [4-1-2] and [5-1-2] cycloaddition reactions to form [r]-annulated tetrahydrofurans (Scheme 66). In all cases reported, excellent yields have been obtained in less than lOmin reaction time at 15-20 °C <2006JOC91>. [Pg.536]


See other pages where Ethers intramolecular cycloaddition reactions is mentioned: [Pg.13]    [Pg.23]    [Pg.95]    [Pg.320]    [Pg.216]    [Pg.249]    [Pg.276]    [Pg.276]    [Pg.692]    [Pg.348]    [Pg.516]    [Pg.543]    [Pg.640]    [Pg.353]    [Pg.56]    [Pg.739]    [Pg.156]    [Pg.442]    [Pg.322]    [Pg.66]    [Pg.49]    [Pg.1093]    [Pg.155]    [Pg.407]    [Pg.191]    [Pg.195]    [Pg.108]    [Pg.346]    [Pg.860]    [Pg.156]    [Pg.291]    [Pg.442]    [Pg.1023]    [Pg.33]   


SEARCH



1,3-cycloaddition intramolecular

Cycloaddition ether

Cycloaddition reaction intramolecular

Cycloaddition reactions intramolecular cycloadditions

© 2024 chempedia.info