Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Estimates of heat capacity from crystallographic, elastic and vibrational characteristics

Estimates of heat capacity from crystallographic, elastic and vibrational characteristics [Pg.247]

Kieffer has estimated the heat capacity of a large number of minerals from readily available data [8], The model, which may be used for many kinds of materials, consists of three parts. There are three acoustic branches whose maximum cut-off frequencies are determined from speed of sound data or from elastic constants. The corresponding heat capacity contributions are calculated using a modified Debye model where dispersion is taken into account. High-frequency optic modes are determined from specific localized internal vibrations (Si-O, C-0 and O-H stretches in different groups of atoms) as observed by IR and Raman spectroscopy. The heat capacity contributions are here calculated using the Einstein model. The remaining modes are ascribed to an optic continuum, where the density of states is constant in an interval from vl to vp and where the frequency limits Vy and Vp are estimated from Raman and IR spectra. [Pg.247]

The Kieffer approach uses a harmonic description of the lattice dynamics in which the phonon frequencies are independent of temperature and pressure. A further improvement of the accuracy of the model is achieved by taking the effect of temperature and pressure on the vibrational frequencies explicitly into account. This gives better agreement with experimental heat capacity data that usually are collected at constant pressure [9], [Pg.247]




SEARCH



And heat capacity

Elastic heating

Estimated from

Estimation capacity

Heat characteristics

Vibrational heating

© 2024 chempedia.info