Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters reductive elimination

Scheme 12 Methanol oxidative addition and ester reductive elimination... Scheme 12 Methanol oxidative addition and ester reductive elimination...
Diphenylketene (253) reacts with allyl carbonate or acetate to give the a-allylated ester 255 at 0 °C in DMF, The reaction proceeds via the intermediate 254 formed by the insertion of the C = C bond of the ketene into 7r-allylpalla-dium, followed by reductive elimination. Depending on the reaction conditions, the decarbonylation and elimination of h-hydrogen take place in benzene at 25 °C to afford the conjugated diene 256(155]. [Pg.324]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

A large variety of methods is applicable to the formation of isolated double bonds. This permits selection of reagents compatible with other functionality present. Alcohol dehydration, ester elimination and other nonreductive p eliminations are the most common methods. Reductive elimination of halo-hydrins, vic-dihalides, etc., and of a variety of ketone derivatives has also been used. [Pg.267]

Disulfonate esters of vicinal diols sometimes undergo reductive elimination on treatment with sodium iodide in acetone at elevated temperature and pressure (usually l(X)-200°). This reaction derived from sugar chemistry has been used occasionally with steroids, principally in the elimination of 2,3-dihy-droxysapogenin mesylates. The stereochemistry of the substituents and ring junction is important, as illustrated in the formation of the A -olefins (133) and (134). [Pg.344]

The acetates of vicinal diols undergo reductive elimination on treatment with metal-ammonia yields of olefin are only significant if one ester is tertiary and the arrangement is tran -diaxial. ... [Pg.345]

Biocatalysts have received great attention in these last few years. Due to their capacity to perform asymmetric transformations under mild conditions [78], they have been useful tools for synthesizing optically active organic molecules. They promote a variety of chemical transformations, including the syntheses of esters and amides and oxidations, reductions, eliminations and carbon carbon forming. Little is known about biocatalyst-promoted Diels Alder reactions. [Pg.180]

In recent years, several model complexes have been synthesized and studied to understand the properties of these complexes, for example, the influence of S- or N-ligands or NO-releasing abilities [119]. It is not always easy to determine the electronic character of the NO-ligands in nitrosyliron complexes thus, forms of NO [120], neutral NO, or NO [121] have been postulated depending on each complex. Similarly, it is difficult to determine the oxidation state of Fe therefore, these complexes are categorized in the Enemark-Feltham notation [122], where the number of rf-electrons of Fe is indicated. In studies on the nitrosylation pathway of thiolate complexes, Liaw et al. could show that the nitrosylation of complexes [Fe(SR)4] (R = Ph, Et) led to the formation of air- and light-sensitive mono-nitrosyl complexes [Fe(NO)(SR)3] in which tetrathiolate iron(+3) complexes were reduced to Fe(+2) under formation of (SR)2. Further nitrosylation by NO yields the dinitrosyl complexes [(SR)2Fe(NO)2], while nitrosylation by NO forms the neutral complex [Fe(NO)2(SR)2] and subsequently Roussin s red ester [Fe2(p-SR)2(NO)4] under reductive elimination forming (SR)2. Thus, nitrosylation of biomimetic oxidized- and reduced-form rubredoxin was mimicked [121]. Lip-pard et al. showed that dinuclear Fe-clusters are susceptible to disassembly in the presence of NO [123]. [Pg.209]

Scheme 2.20 gives some examples of the application of the Julia olefination in synthesis. Entry 1 demonstrates the reductive elimination conditions. This reaction gave a good E.Z ratio under the conditions shown. Entry 2 is an example of the use of the modified reaction that gave a good E.Z ratio in the synthesis of vinyl chlorides. Entry 3 uses the tetrazole version of the reaction in the synthesis of a long-chain ester. Entries 4 to 7 illustrate the use of modified conditions for the synthesis of polyfunctional molecules. [Pg.175]

In a related procedure, chlorodiphenylphosphine, imidazole, iodine, and zinc cause reductive elimination of diols.298 (3-Iodophosphinate esters can be shown to be intermediates in some cases. [Pg.460]

Benzoate esters of 2-en-l,4-diols undergo reductive elimination with sodium amalgam.306... [Pg.461]

The same reaction sequence performed in methanol affords a mixture of diastereo-mers of the phosphorylated phosphinic ester 48b, of which one pure isomer can be isolated32 . In the presence of piperidine, reductive elimination of nitrogen 28,29) from 45 to give bis(diphenylphosphoryI)methane competes with the prevailing formation of the phosphinic piperidide 48c32). Expected trapping of 47 by [2 + 2]-cycloaddition with benzaldehyde fails to occur in place of 1,2k5-oxaphosphetanes, products are obtained which arise mainly by way of the benzoyl radical32,33). [Pg.85]

Alternative paths for decomposition of the metal carboxylate can lead to ketones, acid anhydrides, esters, acid fluorides (1,11,22,68,77,78), and various coupling products (21,77,78), and aspects of these reactions have been reviewed (1,11). Competition from these routes is often substantial when thermal decomposition is carried out in the absence of a solvent (Section III,D), and their formation is attributable to homolytic pathways (11,21,77,78). Other alternative paths are reductive elimination rather than metal-carbon bond formation [Eq. (36)] (Section III,B) and formation of metal-oxygen rather than metal-carbon bonded compounds [e.g., Eqs. (107) (119) and (108) (120). Reactions (36) and (108) are reversible, and C02 activation (116) is involved in the reverse reactions (48,120). [Pg.267]

Scheme 7 comprises the following patterns First, a metallacycle gives rise to ketones by CO insertion and reductive elimination. Next, a nickel hydride inserts an unsaturated substrate L, followed by CO. The acyl intermediate can give rise to reductive elimination with formation of acyl halides or acids and esters by hydrolysis, or it can insert a new ligand with subsequent reductive elimination as before. Alternatively, there may be a new insertion of carbon monoxide with final hydrolysis. Third, an intermediate R—Ni—X is formed by oxidative addition. It can react in several ways It can insert a new ligand L, followed by CO to give an... [Pg.225]

The formation of vinylboranes and vinylboronate esters during some metal-promoted hydroboration of alkenes has led to the suggestion of an alternative mechanistic pathway. Insertion of the alkene into the metal-boron bond occurs in preference to insertion into the metal-hydride bond.44,51,52 In a competing side-reaction to reductive elimination, f3-H elimination from the resulting borylalkyl intermediate furnishes the vinylborane byproduct.52 There remains however a substantial body of evidence, both experimental53 and theoretical,54 that supports the idea that transfer of hydride to the coordinated alkene precedes transfer of the boryl fragment. [Pg.842]

Carbonylation of 4-en-2-ynyl carbonates offers a novel synthetic method for cross-conjugated 4-oxo-5-alkylidene-2-cyclopentenecarboxylates (Scheme 16.35) [38]. The primary product of the process appears to be a 2-vinyl-2,3-dienyl ester, leading to a palladacycle, which in turn follows CO insertion into the Pd-sp2 carbon, reductive elimination of Pd(0) species and isomerization, leading to the final product. [Pg.938]

The last possibility for ester formation (20, Figure 12.15) comprises the reductive elimination of esters from acyl-alkoxy-palladium complexes 17, formed by deprotonation of the alcohol adducts 16. Clearly, it requires cis coordination of the alkoxide and acyl fragment. Since monodentates have a preference for ester formation, it was thought that this mechanism was very unlikely. [Pg.253]


See other pages where Esters reductive elimination is mentioned: [Pg.204]    [Pg.204]    [Pg.254]    [Pg.460]    [Pg.634]    [Pg.205]    [Pg.286]    [Pg.634]    [Pg.90]    [Pg.243]    [Pg.89]    [Pg.227]    [Pg.548]    [Pg.550]    [Pg.841]    [Pg.502]    [Pg.392]    [Pg.143]    [Pg.371]    [Pg.181]    [Pg.300]    [Pg.112]    [Pg.254]    [Pg.260]    [Pg.293]    [Pg.549]    [Pg.223]    [Pg.224]    [Pg.239]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Elimination ester

Esters reduction

© 2024 chempedia.info