Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters a-alkylation

Ketonitriles s. Cyanoketones -Ketophosphonic acid esters a-alkylation 26, 853s31... [Pg.286]

Dithiobiurets s. Isodithiobiurets Dithiocarbamic acid allyl esters -, a-alkylation and rearrangement 29, 809 Dithiocarbazic acid esters... [Pg.256]

II. Esters, (a) Alkyl esters (for example, methyl esters), and (b) phena-cyl esters (for example, esters of p-bromophenacyl alcohol). [Pg.249]

Esters are alkylated in the presence of strong bases in aprotic solvents. A common combination is LDA in tetrabydrofuran at low temperatures. Equimolar amounts of base are sufficient and only the mono-carbanion Js formed. After addition of one mole of alkyl halide the products form rapidly, and no dialkylation, which is a problem in the presence of excess base, is possible. Addition of one more mole of LDA and of another alkyl halide leads to asymmetric dialkylation of one or-carbon atom in high yield (R.J. Cregge, 1973). [Pg.22]

Lewis acids such as zinc triflate[16] and BF3[17] have been used to effect the reaction of indole with jV-proiected aziridine-2-carboxylate esters. These alkylations by aziridines constitute a potential method for the enantioselective introduction of tryptophan side-chains in a single step. (See Chapter 13 for other methods of synthesis of tryptophans.)... [Pg.107]

Phosphate Esters. A variety of phosphate esters are used as synthetic lubricants, particularly because of their good fire resistance. They have the general formula OP(OR)2, where R may represent a variety of aryl or alkyl hydrocarbon groups containing four or more carbon atoms to give three broad classes triaryl, trialkyl, and aryl alkyl phosphates (37,38). [Pg.246]

Naphthol is mainly used in the manufacture of the insecticide carbaryl (59), l-naphthyl A/-methyicarbamate/ iJ-2j5 - (Sevin) (22), which is produced by the reaction of 1-naphthol with methyl isocyanate. Methyl isocyanate is usually prepared by treating methylamine with phosgene. Methyl isocyanate is a very toxic Hquid, boiling at 38°C, and should not be stored for long periods of time (Bhopal accident, India). India has developed a process for the preparation of aryl esters of A/-alkyl carbamic acids. Thus l-naphthyl methylcarbamate is prepared by refluxing 1-naphthol with ethyl methylcarbamate and POCl in toluene (60). In 1992, carbaryl production totaled > 11.4 x 10 t(35). Rhc ne-Poulenc, at its Institute, W. Va., facihty is the only carbaryl producer in United States. [Pg.497]

Acrylic Esters. A procedure has been described for preparation of higher esters from methyl acrylate that illustrates the use of an acid catalyst together with the removal of one of the products by azeotropic distillation (112). Another procedure for the preparation of butyl acrylate, secondary alkyl acrylates, and hydroxyalkyl acrylates using -toluenesulfonic acid as a catalyst has been described (113). Alurninumisopropoxide catalyzes the reaction of amino alcohols with methyl acrylate and methyl methacrylate. A review of the synthesis of acryhc esters by transesterification is given in Reference 114 (see... [Pg.383]

The formation of g-alkyl-a,g-unsaturated esters by reaction of lithium dialkylcuprates or Grignard reagents in the presence of copper(I) iodide, with g-phenylthio-, > g-acetoxy-g-chloro-, and g-phosphoryloxy-a,g-unsaturated esters has been reported. The principal advantage of the enol phosphate method is the ease and efficiency with which these compounds may be prepared from g-keto esters. A wide variety of cyclic and acyclic g-alkyl-a,g-unsaturated esters has been synthesized from the corresponding g-keto esters. However, the method is limited to primary dialkylcuprates. Acyclic g-keto esters afford (Zl-enol phosphates which undergo stereoselective substitution with lithium dialkylcuprates with predominant retention of stereochemistry (usually > 85-98i )). It is essential that the cuprate coupling reaction of the acyclic enol phosphates be carried out at lower temperatures (-47 to -9a°C) to achieve high stereoselectivity. When combined with they-... [Pg.21]

In 1950, Dahlquist et al. [82] reported the use of polyvinyl A -alkyl carbamates as PSA release materials. Since then, many other types of alkyl side chain polymers have been patented for use as release coatings, including copolymers based on higher alkyl acrylates or methaci ylates [83-86], polyvinyl esters of higher aliphatic fatty acids [87], higher alkyl vinyl esters or ethers and a maleic... [Pg.550]

During electrochemical fluorination retention of important functional groups or atoms in molecules is essential. Acyl fluorides and chlorides, but not carboxylic acids and anhydrides (which decarboxylate), survive perfluorination to the perfluorinated acid fluorides, albeit with some cyclization in longer chain (>C4) species [73]. Electrochemical fluorination of acetyl fluoride produces perfluoro-acetyl fluoride in 36-45% yields [85]. Electrochemical fluorination of octanoyl chloride results in perfluorinated cyclic ethers as well as perfluorinated octanoyl fluonde. Cyclization decreases as initial substrate concentration increases and has been linked to hydrogen-bonded onium polycations [73]. Cyclization is a common phenomenon involving longer (>C4) and branched chains. a-Alkyl-substituted carboxylic acid chlorides, fluorides, and methyl esters produce both the perfluorinated cyclic five- and six-membered ring ethers as well as the perfluorinated acid... [Pg.113]

Conversely, when A-alkyl tryptophan methyl esters were condensed with aldehydes, the trans diastereomers were observed as the major products." X-ray-crystal structures of 1,2,3-trisubstituted tetrahydro-P-carbolines revealed that the Cl substituent preferentially adopted a pseudo-axial position, forcing the C3 substituent into a pseudo-equatorial orientation to give the kinetically and thermodynamically preferred trans isomer." As the steric size of the Cl and N2 substituents increased, the selectivity for the trans isomer became greater. A-alkyl-L-tryptophan methyl ester 42 was condensed with various aliphatic aldehydes in the presence of trifluoroacetic acid to give predominantly the trans isomers. ... [Pg.474]

The rate of the alkylation reaction depends on the enolate concentration, since it proceeds by a SN2-mechanism. If the concentration of the enolate is low, various competitive side-reactions may take place. As expected, among those are E2-eliminations by reaction of the alkyl halide 2 with base. A second alkylation may take place with mono-alkylated product already formed, to yield a -alkylated malonic ester however such a reaction is generally slower than the alkylation of unsubstituted starting material by a factor of about 10. The monoalkylation is in most cases easy to control. Dialkylated malonic esters with different alkyl substituents—e.g. ethyl and isopropyl—can be prepared by a step by step reaction sequence ... [Pg.191]

The (Horner-)Wadsworth-Emmons reaction generally is superior to the Wittig reaction, and has found application in many cases for the synthesis of a ,/3-unsaturated esters, a ,/3-unsaturated ketones and other conjugated systems. Yields are often better then with the original Wittig procedure. However the Wadsworth-Emmons method is not suitable for the preparation of alkenes with simple, non-stabilizing alkyl substituents. [Pg.296]

Photodriven reactions of Fischer carbenes with alcohols produces esters, the expected product from nucleophilic addition to ketenes. Hydroxycarbene complexes, generated in situ by protonation of the corresponding ate complex, produced a-hydroxyesters in modest yield (Table 15) [103]. Ketals,presumably formed by thermal decomposition of the carbenes, were major by-products. The discovery that amides were readily converted to aminocarbene complexes [104] resulted in an efficient approach to a-amino acids by photodriven reaction of these aminocarbenes with alcohols (Table 16) [105,106]. a-Alkylation of the (methyl)(dibenzylamino)carbene complex followed by photolysis produced a range of racemic alanine derivatives (Eq. 26). With chiral oxazolidine carbene complexes optically active amino acid derivatives were available (Eq. 27). Since both enantiomers of the optically active chromium aminocarbene are equally available, both the natural S and unnatural R amino acid derivatives are equally... [Pg.182]

This reaction is rapid and can, under anhydrous conditions, be carried out at mild temperatures (60-120°C). The type of leaving group has a strong effect on attainable molecular weights. The polyamide melt syndtesis with dimediyl tereph-thalate has however not been so successful, because N-methylation takes place at high temperatures. This N-methylation is due to die mediyl ester alkylation of die amines and not due to the presence of medianol.28 40 This N-mediylation reaction is significant at temperatures over 200°C. Widi odier esters, N-alkylation takes place to a much lower extent. [Pg.158]

Dynamic kinetic resolution of racemic ketones proceeds through asymmetric reduction when the substrate does racemize and the product does not under the applied experimental conditions. Dynamic kinetic resolution of a-alkyl P-keto ester has been performed through enzymatic reduction. One isomer, out of the four possible products for the unselective reduction (Figure 8.38), can be selectively synthesized using biocatalyst, and by changing the biocatalyst or conditions, all of the isomers can be selectively synthesized [29]. [Pg.221]

Dynamic kinetic resolution of a-alkyl-P-keto ester was conducted successfully using biocatalysts. For example, baker s yeast gave selectively syn(2R, 3S)-product [29a] and the selectivity was enhanced by using selective inhibitor [29b] or heat treatment of the yeast [29c]. Organic solvent was used for stereochemical control of G. candidum [29d]. Plant cell cultures were used for reduction of 2-methyl-3-oxobu-tanoate and afforded antialcohol with Marchantia [29e,f] and syn-isomer with Glycine max [29f]. [Pg.221]

Compounds 137 and 138 are thus synthons for carboxylic acids this is another indirect method for the a alkylation of a carboxylic acid, representing an alternative to the malonic ester synthesis (10-104) and to 10-106 and 10-109. The method can be adapted to the preparation of optically active carboxylic acids by the use of a chiral reagent. Note that, unlike 132, 137 can be alkylated even if R is alkyl. However, the C=N bond of 137 and 138 cannot be effectively reduced, so that aldehyde synthesis is not feasible here. ... [Pg.559]


See other pages where Esters a-alkylation is mentioned: [Pg.461]    [Pg.296]    [Pg.310]    [Pg.314]    [Pg.128]    [Pg.218]    [Pg.278]    [Pg.257]    [Pg.297]    [Pg.461]    [Pg.296]    [Pg.310]    [Pg.314]    [Pg.128]    [Pg.218]    [Pg.278]    [Pg.257]    [Pg.297]    [Pg.215]    [Pg.325]    [Pg.99]    [Pg.250]    [Pg.280]    [Pg.175]    [Pg.145]    [Pg.874]    [Pg.68]    [Pg.834]    [Pg.480]    [Pg.152]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



A-alkylated esters

Alkyl esters

Esters alkylation

© 2024 chempedia.info