Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium potential, rate

Equation (2-38) is valid for every region of the surface. In this case only weight loss corrosion is possible and not localized corrosion. Figure 2-5 shows total and partial current densities of a mixed electrode. In free corrosion 7 = 0. The free corrosion potential lies between the equilibrium potentials of the partial reactions and U Q, and corresponds in this case to the rest potential. Deviations from the rest potential are called polarization voltage or polarization. At the rest potential = ly l, which is the corrosion rate in free corrosion. With anodic polarization resulting from positive total current densities, the potential becomes more positive and the corrosion rate greater. This effect is known as anodic enhancement of corrosion. For a quantitative view, it is unfortunately often overlooked that neither the corrosion rate nor its increase corresponds to anodic total current density unless the cathodic partial current is negligibly small. Quantitative forecasts are possible only if the Jq U) curve is known. [Pg.44]

When cathodic polarization is a result of negative total current densities 7., the potential becomes more negative and the corrosion rate lower. Finally, at the equilibrium potential it becomes zero. In neutral water equilibrium potentials are undefined or not attainable. Instead, protective potentials are quoted at which the corrosion rate is negligibly low. This is the case when = 1 flA cm (w = lOjUm a ) which is described by the following criteria for cathodic protection ... [Pg.45]

Consider now the transfer of electrons from electrode II to electrode I by means of an external source of e.m.f. and a variable resistance (Fig.. 20b). Prior to this transfer the electrodes are both at equilibrium, and the equilibrium potentials of the metal/solution interfaces will therefore be the same, i.e. Ey — Ell = E, where E, is the reversible or equilibrium potential. When transfer of electrons at a slow rate is made to take place by means of the external e.m.f., the equilibrium is disturbed and Uie rat of the charge transfer processes become unequal. At electrode I, /ai.i > - ai.i. 3nd there is... [Pg.77]

It is apparent (Fig. 1.21) that at potentials removed from the equilibrium potential see equation 1.30) the rate of charge transfer of (a) silver cations from the metal to the solution (anodic reaction), (b) silver aquo cations from the solution to the metal (cathodic reaction) and (c) electrons through the metallic circuit from anode to cathode, are equal, so that any one may be used to evaluate the rates of the others. The rate is most conveniently determined from the rate of transfer of electrons in the metallic circuit (the current 1) by means of an ammeter, and if / is maintained constant it can eilso be used to eveduate the extent. A more precise method of determining the quantity of charge transferred is the coulometer, in which the extent of a single well-defined reaction is determined accurately, e.g. by the quantity of metal electrodeposited, by the volume of gas evolved, etc. The reaction Ag (aq.) -t- e = Ag is utilised in the silver coulometer, and provides one of the most accurate methods of determining the extent of charge transfer. [Pg.80]

The reversible or equilibrium potentials given in the EMF series of metals may have little significance in assessing which metal in a couple will have an enhanced corrosion rate and which will be protected. [Pg.77]

Fig. 20.16 Potential energy against distance curves Morse curves), (a) No potential dilTerence (p.z.c.), (b) at the equilibrium potential when / = / and the heights of the energy barrier are the same for both reactions, but p.z.c W potential made more negative than E q and (d) potential made more positive than E. The p.z.c. has been taken as zero potential, and A, and h,. are the heights of the potential barriersj or the anodic and cathodic reactions, respectively / is the rate of the cathodic reaction and / the rate of the anodic reaction (after Bockris... Fig. 20.16 Potential energy against distance curves Morse curves), (a) No potential dilTerence (p.z.c.), (b) at the equilibrium potential when / = / and the heights of the energy barrier are the same for both reactions, but p.z.c W potential made more negative than E q and (d) potential made more positive than E. The p.z.c. has been taken as zero potential, and A, and h,. are the heights of the potential barriersj or the anodic and cathodic reactions, respectively / is the rate of the cathodic reaction and / the rate of the anodic reaction (after Bockris...
When an electrode is at equilibrium the rate per unit area of the cathodic reaction equals that of the anodic reaction (the partial currents) and there is no net transfer of charge the potential of the electrode is the equilibrium potential and it is said to be unpolarised ... [Pg.1196]

Fig. 20.24(7) and the rates of dissolution and discharge become equal. The potential is then the equilibrium potential, i.e. [Pg.1250]

Equilibrium Potential ( o) the electrode potential of an unpolarised electrode at equilibrium. At the equilibrium potential there is no net reaction. The potential is controlled by the same electrode reaction occurring anodically and cathodically at an equal rate, called the exchange current density. [Pg.1368]

Exchange Current Density (/ o) the rate of exchange of electrons (expressed as a current per unit area) between the two components of a single electrochemical reaction when the reaction is in equilibrium. The exchange current density flows only at the equilibrium potential. [Pg.1368]

Corrosion of the positive grid [Eq. (28)1 occurs equivalent to about 1 mA/lOOAh at open-circuit voltage and intact passivation layer. It depends on electrode potential, and is at minimum about 40-80mV above the PbS04/Pb02 equilibrium potential. The corrosion rate depends furthermore to some extent on alloy composition and is increased with high anti-monial alloys,... [Pg.162]

For thermodynamic reasons, an electrochemical reaction can occur only within a dehnite region of potentials a cathodic reaction at electrode potentials more negative, an anodic reaction at potentials more positive than the equilibrium potential of that reaction. This condition only implies a possibility that the electrode reaction will occur in the corresponding region of potentials it provides no indication of whether the reaction will actually occur, and if so, what its rate will be. The answers are provided not by thermodynamics but by electrochemical kinetics. [Pg.79]

When anodic polarization is appreciable, the reverse (cathodic) partial CD becomes exceedingly low and practically, we can sume that i i when cathodic polarization is appreciable, we can assume that i i. Thus, the total range of potential can be divided into three regions one region at low values of polarization (to both sides of the equilibrium potential), where the two partial reactions occur at comparable rates,... [Pg.80]

Electrode reactions are heterogeneous since they occur at interfaces between dissimilar phases. During current flow the surface concentrations Cg j of the substances involved in the reaction change relative to the initial (bulk) concentrations Cy p Hence, the value of the equilibrium potential is defined by the Nemst equation changes, and a special type of polarization arises where the shift of electrode potential is due to a change in equilibrium potential of the electrode. The surface concentrations that are established are determined by the balance between electrode reaction rates and the supply or elimination of each substance by diffusion [Eq. (4.9)]. Hence, this type of polarization, is called diffusional concentration polarization or simply concentration polarization. (Here we must take into account that another type of concentration polarization exists which is not tied to diffusion processes see Section 13.5.)... [Pg.81]

The specific rate of an electrode reaction depends not only on electrode polarization but also on tfie reactant concentrations. Changes in reactant concentrations affect not only reaction rates but also the values of equilibrium potentials. To differentiate both these influences, kinetic equations are generally used (especially at high values of polarization), relating the current density not with the value of polarization AE but with the potential of the electrode E ... [Pg.84]

Equations (6.9) and (6.10), which contain the rate constants, the electrode potential, and the concentrations, are equivalent to Eqs. (6.12) and (6.13), which contain the exchange CD and the electrode s polarization. But in the second set of equations the concentrations do not appear explicitly they enter the equations through the values of exchange CD and equilibrium potential. By convention, equations of the former type will be called kinetic equations, and those of the latter type will be called polarization equations. [Pg.86]

These equations show that whereas the kinetic coefficients of an individual reaction can assume any value, the coefficients of its forward and reverse process are always interrelated. The relation between the standard equilibrium potential EP and the rate constants and is analogous to the well-known physicochemical relation between equilibrium constant K and the rate constants of the forward and reverse process. [Pg.87]

Electrochemical reactions differ fundamentally from chemical reactions in that the kinetic parameters are not constant (i.e., they are not rate constants ) but depend on the electrode potential. In the typical case this dependence is described by Eq. (6.33). This dependence has an important consequence At given arbitrary values of the concentrations d c, an equilibrium potential Eq exists in the case of electrochemical reactions which is the potential at which substances A and D are in equilibrium with each other. At this point (Eq) the intermediate B is in common equilibrium with substances A and D. For this equilibrium concentration we obtain from Eqs. (13.9) and (13.11),... [Pg.223]

When such a polyfunctional electrode is polarized, the net current, i, will be given by ii - 4. When the potential is made more negative, the rate of cathodic hydrogen evolution will increase (Fig. 13.2b, point B), and the rate of anodic metal dissolution will decrease (point B ). This effect is known as cathodic protection of the metal. At potentials more negative than the metaTs equilibrium potential, its dissolution ceases completely. When the potential is made more positive, the rate of anodic dissolution will increase (point D). However, at the same time the rate of cathodic hydrogen evolution will decrease (point D ), and the rate of spontaneous metal dissolution (the share of anodic dissolution not associated with the net current but with hydrogen evolution) will also decrease. This phenomenon is known as the difference effect. [Pg.238]

In an electrochemical system, gas supersaturation of the solution layer next to the electrode will produce a shift of equilibrium potential (as in diffusional concentration polarization). In the cathodic evolution of hydrogen, the shift is in the negative direction, in the anodic evolution of chlorine it is in the positive direction. When this step is rate determining and other causes of polarization do not exist, the value of electrode polarization will be related to solution supersaturation by... [Pg.255]

In 1924, John Alfred Valentine Butler derived an equation for the equilibrium potential of an electrode using the equations for the finite rate of anodic and cathodic steps. [Pg.267]

At mercury and graphite electrodes the kinetics of reactions (15.21) and (15.22) can be studied separately (in different regions of potential). It follows from the experimental data (Fig. 15.6) that in acidic solutions the slope b 0.12 V. The reaction rate is proportional to the oxygen partial pressure (its solution concentration). At a given current density the electrode potential is independent of solution pH because of the shift of equilibrium potential, the electrode s polarization decreases by 0.06 V when the pH is raised by a unit. These data indicate that the rate-determining step is addition of the first electron to the oxygen molecule ... [Pg.276]

Equation (6.13), in fact, reflects the physical nature of the electrode process, consisting of the anode (the first term) and cathode (the second term) reactions. At equilibrium potential, E = Eq, the rates of both reactions are equal and the net current is zero, although both anode and cathode currents are nonzero and are equal to the exchange current f. With the variation of the electrode potential, the rate of one of these reactions increases, whereas that of the other decreases. At sufficiently large electrode polarization (i.e., deviation of the electrode potential from Eg), one of these processes dominates (depending on the sign of E - Eg) and the dependence of the net current on the potential is approximately exponential (Tafel equation). [Pg.637]

This last equation contains the two essential activation terms met in electrocatalysis an exponential function of the electrode potential E and an exponential function of the chemical activation energy AGj (defined as the activation energy at the standard equilibrium potential). By modifying the nature and structure of the electrode material (the catalyst), one may decrease AGq, thus increasing jo, as a result of the catalytic properties of the electrode. This leads to an increase in the reaction rate j. [Pg.346]

For most of the reactions frequently employed in limiting-current studies, the surface overpotential is not negligible. A criterion for assessing its magnitude is the exchange-current density i0, which is a measure of the reaction rate at the equilibrium potential of the electrode (i.e., when anodic and cathodic rates are equal). [Pg.225]


See other pages where Equilibrium potential, rate is mentioned: [Pg.1923]    [Pg.36]    [Pg.42]    [Pg.119]    [Pg.122]    [Pg.128]    [Pg.129]    [Pg.1163]    [Pg.1237]    [Pg.1238]    [Pg.1193]    [Pg.1253]    [Pg.229]    [Pg.236]    [Pg.236]    [Pg.14]    [Pg.265]    [Pg.79]    [Pg.37]    [Pg.94]    [Pg.236]    [Pg.278]    [Pg.9]    [Pg.114]    [Pg.287]   


SEARCH



Equilibrium potentials

Rate-equilibrium

© 2024 chempedia.info