Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium flow freezing

Near-equilibrium flow conditions generally yield the maximum thrust for rocket propulsion, because partial recombination of the dissociated atoms, as the temperature falls, releases additional kinetic energy. On the other hand, when the rocket engine is considered for high temperature chemical processing, it is invariably desirable to freeze the composition attained in the combustion chamber. From both theoretical and practical standpoints, it is not always possible to predetermine the flow conditions in the De Laval nozzle as the foregoing discussion indicates,... [Pg.95]

The circumstellar chemistry is often subdivided into three main zones, which are determined by a comparison of the characteristic dynamic flow time, R/vx, with the chemical reaction times (Lafont et al. 1982 Omont 1987 Millar 1988). (i) In the region closest to the star (perhaps R 1014 cm), the density is sufficiently high that three-body chemical reactions occur in a time short compared to the dynamic time. In this regime, we expect the chemical abundances to approach thermodynamic equilibrium, (ii) Somewhat further away from the star (1014 cm < R < 1016 cm), there is a freeze-out of the products of the three-body reactions (McCabe et al. 1979). In this region, two-body reactions dominate the active chemistry, (iii) Finally, far from the star (R > 1016 cm), the density becomes sufficiently low that the only significant chemical processing is the photodestruction that results from absorption of ambient interstellar ultraviolet photons by the resulting molecules that flow from the central star. [Pg.64]

The procedures for calculating the performance are also represented on fig. II. C. 1. For the modified Bray process the flow proceeds from the chamber condition (C) and follows the equilibrium result to a point just past the throat condition to the freezing point (B). Since equilibrium prevails from (C) to (B), the process is isentropic. From (B), the flow expands to (R) and remains frozen during the process. Again this step takes place in Plane A since the flow is frozen. [Pg.73]

Most, if not all, solutions of the nozzle expansion problem have used equilibrium composition chamber conditions as the initial condition for nozzle solution. The feature is common to all of the nozzle flow solutions that is, the equilibrium composition expansion, frozen composition expansion, Bray freezing model, and kinetic rate solutions have all invoked the assumption of equilibrium composition at the beginning of the expansion process. While the failure to obtain equilibrium composition predicted performance, in terms of experimental characteristic velocities, has suggested a departure from equilibrium in the combustion chamber, only recently have non-equilibrium compositions been measured directly (31). [Pg.81]

It will be remembered that equilibrium does not imply total freezing of the reaction. It is characterized by a dynamic situation in which the reaction can proceed in both directions at a high rate. Equilibrium is reached when the forward and backward rates are equal and the net rate, which one would observe, say, as a change of concentration in a chemical reaction or a flow of current in the external circuit in an electrochemical reaction, is zero. [Pg.62]

Marine waters normally have salinities that cause their freezing points to be below — 1.8°C. In polar seas there are particular areas in which the temperature of the water may remain constant at these temperatures, the equilibrium temperature of the ice—salt water mixture. Where there is a permanent ice pack and some restrictions on flow of water, such as in a bay, fjord, or sound, the temperature of the water may remain nearly constant throughout the year, providing there is no seasonal dilution of the sea water by fresh water. But fish remain in the normal-salinity waters and consequently are exposed to temperatures below — 1.8°C. [Pg.193]

Temperature may be defined as that property of a body which determines the flow of heat. Two bodies are at the same temperature if there is no transfer of heat when they are placed together. Temperature is an independent dimension which cannot be defined in terms of mass, length, and time. The SI unit of temperature is the kelvin, and 1 kelvin (K) is defined as 1/273.16 times the triple point temperature. The triple point is the temperature at which water coexists in equilibrium with ice at the pressure exerted by water vapor only. The triple point is 0.01 K above the normal freezing point of water, at which water and ice coexist in equilibrium with air at standard atmospheric pressure. The SI unit of temperature is so defined that 0 K is the absolute zero of temperature the SI or Kelvin scale is often called the absolute temperature scale. Although absolute zero is never actually attainable, it has been approached to within 10" K. [Pg.3]

If freezing of tissues occurs slowly, ice forms in extracellular areas as water flows out of the cell by exosmosis. As a result, the cell dehydrates and does not freeze intracellularly. However, if the cell is cooled rapidly, it cannot lose water fast enough to maintain equilibrium with its environment, and it therefore becomes increasingly supercooled and eventually freezes intracellularly (27). Mazur (27,28) suggested that injury from intracellular ice and its subsequent growth by recrystallization is a direct... [Pg.200]

The measurement of an osmotic pressure can also be carried out more accurately than can the measurement of a boiling-point elevation or a freezing-point depression. One difficulty in measuring very small osmotic pressures is the long time required for the system to reach equilibrium. This difficulty is sometimes overcome by imposing a pressure on the solution side of the membrane and observing how the rate of flow of liquid varies over time. The osmotic pressure can be calculated from this variation. Molecular weights of up to 3 000000 have been measured by the use of such techniques. [Pg.98]

Figure 6 Heat flow DSC scan for freeze-dried sucrose, containing 0.5% wjw residual water. Above Tg, the sugar becomes vulnerable to more or less rapid collapse and/or sucrose crystallisation, followed by melting at its equilibrium... Figure 6 Heat flow DSC scan for freeze-dried sucrose, containing 0.5% wjw residual water. Above Tg, the sugar becomes vulnerable to more or less rapid collapse and/or sucrose crystallisation, followed by melting at its equilibrium...
Flush models can also be configured to simulate the effects of dispersive mixing. Dispersion is the physical process by which groundwaters mix in the subsurface (Freeze and Cherry, 1979). With mixing, the groundwaters react with each other and the aquifer through which they flow (e.g., Runnells, 1969). In a flush model, two fluids can flow into the equilibrium system, displacing the mixed and reacted fluid (Fig. 2.9). [Pg.21]

Alternatively, equilibrium could also be established if the supercooled water were to flow out of the cell and freeze externally instead of internally. The result of this process... [Pg.30]


See other pages where Equilibrium flow freezing is mentioned: [Pg.107]    [Pg.71]    [Pg.73]    [Pg.105]    [Pg.106]    [Pg.105]    [Pg.106]    [Pg.448]    [Pg.221]    [Pg.239]    [Pg.215]    [Pg.73]    [Pg.105]    [Pg.435]    [Pg.263]    [Pg.3]    [Pg.180]    [Pg.73]    [Pg.128]    [Pg.161]    [Pg.286]    [Pg.221]    [Pg.232]    [Pg.351]    [Pg.106]    [Pg.273]    [Pg.427]    [Pg.575]    [Pg.248]    [Pg.105]    [Pg.106]    [Pg.249]    [Pg.356]    [Pg.142]    [Pg.61]    [Pg.325]   
See also in sourсe #XX -- [ Pg.105 ]

See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Flow equilibrium

© 2024 chempedia.info