Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibria Terms Links

The sorption coefficient (K) in Equation (2.84) is the term linking the concentration of a component in the fluid phase with its concentration in the membrane polymer phase. Because sorption is an equilibrium term, conventional thermodynamics can be used to calculate solubilities of gases in polymers to within a factor of two or three. However, diffusion coefficients (D) are kinetic terms that reflect the effect of the surrounding environment on the molecular motion of permeating components. Calculation of diffusion coefficients in liquids and gases is possible, but calculation of diffusion coefficients in polymers is much more difficult. In the long term, the best hope for accurate predictions of diffusion in polymers is the molecular dynamics calculations described in an earlier section. However, this technique is still under development and is currently limited to calculations of the diffusion of small gas molecules in amorphous polymers the... [Pg.48]

For reversible reactions one normally assumes that the observed rate can be expressed as a difference of two terms, one pertaining to the forward reaction and the other to the reverse reaction. Thermodynamics does not require that the rate expression be restricted to two terms or that one associate individual terms with intrinsic rates for forward and reverse reactions. This section is devoted to a discussion of the limitations that thermodynamics places on reaction rate expressions. The analysis is based on the idea that at equilibrium the net rate of reaction becomes zero, a concept that dates back to the historic studies of Guldberg and Waage (2) on the law of mass action. We will consider only cases where the net rate expression consists of two terms, one for the forward direction and one for the reverse direction. Cases where the net rate expression consists of a summation of several terms are usually viewed as corresponding to reactions with two or more parallel paths linking reactants and products. One may associate a pair of terms with each parallel path and use the technique outlined below to determine the thermodynamic restrictions on the form of the concentration dependence within each pair. This type of analysis is based on the principle of detailed balancing discussed in Section 4.1.5.4. [Pg.136]

A8. The Helmholtz elastic free energy relation of the composite network contains a separate term for each of the two networks as in eq. 5. However, the precise mathematical form of the strain dependence is not critical at small deformations. Although all the assumptions seem to be reasonably fulfilled, a simpler method, which would require fewer assumptions, would obviously be desirable. A simpler method can be used if we just want to compare the equilibrium contribution from chain engangling in the cross-linked polymer to the stress-relaxation modulus of the uncross-linked polymer. The new method is described in Part 3. [Pg.446]

The structure of hydrogels that do not contain ionic moieties can be analyzed by the Flory Rehner theory (Flory and Rehner 1943a). This combination of thermodynamic and elasticity theories states that a cross-linked polymer gel which is immersed in a fluid and allowed to reach equilibrium with its surroundings is subject only to two opposing forces, the thermodynamic force of mixing and the retractive force of the polymer chains. At equilibrium, these two forces are equal. Equation (1) describes the physical situation in terms of the Gibbs free energy. [Pg.79]

What we would like to do is use these thermodynamic properties to calculate an equilibrium elastic moduli. The bulk modulus is by definition the constant of proportionality that links the infinitesimal pressure change resulting from a fractional change in volume (Section 2.2.1). In colloidal terms this becomes... [Pg.152]

Each submolecule will experience a frictional drag with the solvent represented by the frictional coefficient /0. This drag is related to the frictional coefficient of the monomer unit (0- If there are x monomer units per link then the frictional coefficient of a link is x(0- If we aPply a step strain to the polymer chain it will deform and its entropy will fall. In order to attain its equilibrium conformation and maximum entropy the chain will rearrange itself by diffusion. The instantaneous elastic response can be thought of as being due to an entropic spring . The drag on each submolecule can be treated in terms of the motion of the N+ 1 ends of the submolecules. We can think of these as beads linked... [Pg.187]

The indices k in the Ihs above denote a pair of basis operators, coupled by the element Rk. - The indices n and /i denote individual interactions (dipole-dipole, anisotropic shielding etc) the double sum over /x and /x indicates the possible occurrence of interference terms between different interactions [9]. The spectral density functions are in turn related to the time-correlation functions (TCFs), the fundamental quantities in non-equilibrium statistical mechanics. The time-correlation functions depend on the strength of the interactions involved and on their modulation by stochastic processes. The TCFs provide the fundamental link between the spin relaxation and molecular dynamics in condensed matter. In many common cases, the TCFs and the spectral density functions can, to a good approximation, be... [Pg.328]

Remark. It is easily seen that the second term of (5.2) by itself causes the norm of if/ to change. In order that this is compensated by the fluctuating term the two terms must be linked, as is done by the relation U = V V. This resembles the classical fluctuation-dissipation theorem, which links both terms by the requirement that the fluctuations compensate the energy loss so as to establish the equilibrium. The difference is that the latter requirement involves the temperature T of the environment that makes it possible to suppress the fluctuations by taking T = 0 without losing the damping. This is the reason why in classical theory deterministic equations with damping exist, see XI.5. [Pg.445]

Carrier facilitated transport involves a combination of chemical reaction and diffusion. One way to model the process is to calculate the equilibrium between the various species in the membrane phase and to link them by the appropriate rate expressions to the species in adjacent feed and permeate solutions. An expression for the concentration gradient of each species across the membrane is then calculated and can be solved to give the membrane flux in terms of the diffusion coefficients, the distribution coefficients, and the rate constants for all the species involved in the process [41,42], Unfortunately, the resulting expressions are too complex to be widely used. [Pg.431]

This equation shows the coupling effect between the metal ion [M] and the hydrogen ion [H] because both appear in the concentration term of the Fick s law expression linked by the equilibrium reaction constant K. Thus, there will be a positive uphill flux of metal ion from the downstream to the upstream solution (that is, in the direction l o) as long as... [Pg.434]


See other pages where Equilibria Terms Links is mentioned: [Pg.353]    [Pg.256]    [Pg.354]    [Pg.1233]    [Pg.140]    [Pg.359]    [Pg.157]    [Pg.618]    [Pg.478]    [Pg.496]    [Pg.506]    [Pg.544]    [Pg.144]    [Pg.408]    [Pg.189]    [Pg.448]    [Pg.227]    [Pg.196]    [Pg.238]    [Pg.348]    [Pg.177]    [Pg.68]    [Pg.580]    [Pg.87]    [Pg.67]    [Pg.973]    [Pg.121]    [Pg.128]    [Pg.973]    [Pg.143]    [Pg.201]    [Pg.54]    [Pg.1112]    [Pg.30]    [Pg.112]    [Pg.99]    [Pg.152]    [Pg.248]    [Pg.18]    [Pg.25]    [Pg.196]   


SEARCH



Equilibrium constant terms Links

Equilibrium term

© 2024 chempedia.info