Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical thermodynamics equilibria

Equation (3.12) is an identity that does not depend on the details of the kinetic reaction mechanism that is operating in a particular system [19], We [19] have shown that Equation (3.12) is intimately related to the Crooks fluctuation theorem [41] - an important result in non-equilibrium statistical thermodynamics - as well as to theories developed by Hill [87, 90], Ussing [201], and Hodgkin and Huxley [95],... [Pg.45]

Point defects are amenable to analysis by equilibrium statistical thermodynamics. The simplest formula for estimating the void concentration in a... [Pg.135]

Finally, the quasi-equilibrium statistical thermodynamics part of Equation (8.107) may be substituted for by the standard expression relating equilibrium constant to a standard Gibbs free energy change for the equilibrium (see Chapter 7), with the result that Equation (8.107)... [Pg.463]

M. Le Bellac, F. Mortessagne, C. Batrouni, Equilibrium and Non-equilibrium Statistical Thermodynamics, Cambridge University Press, Cambridge, 2004. [Pg.50]

Recently, a non-equilibrium statistical thermodynamic theory based on stochastic kinetics has been formulated which has been applied to isothermal non-equilibrium steady state for biological systems [4]. Rate equations in terms of the probabilities of enzyme concentration are used instead of concentration. Expressions for the Gibbs free energy and entropy for the isothermal system are obtained in terms of dynamic cyclic reaction. [Pg.322]

Prigogine, L, George, C., Henin, F., and Rosenfeld, L. Unified formulation of dynamics and thermodynamics. With special reference to non-equilibrium statistical thermodynamics. Chem. Scr., 4(1), 5-32, 1973. [Pg.277]

In order to take account of the fact that the solvent is made up of discrete molecules, one must abandon the simple hydrodynamically-based model and treat the solvent as a many-body system. The simplest theoretical approach is to focus on the encounters of a specific pair of molecules. Their interactions may be handled by calculating the radial distribution function, whose variations with time and distance describe the behaviour of a pair of molecules which are initially separated but eventually collide. Such a treatment leads (as has long been known) to the same limiting equations for the rate constant as the hydro-dynamically based treatments, including the term fco through which an activation requirement can be expressed, and the time-dependent term in (Equation (2.13)) [17]. The procedure can be developed, but the mathematics is somewhat complex. Non-equilibrium statistical thermodynamics provides an alternative approach [16]. The kinetic theory of liquids provides another model that readily permits the inclusion of a variety of interactions the mathematics is again fairly complex [37,a]. In the computer age, however, mathematical complexity is no bar to progress. Refinement of the model is considered further below (Section (2.6)). [Pg.33]

In this equation, we are labeling each molecular partition function with the label of the relevant component. Also, we are reminded that each component is occupying the same volume and has the same temperature (otherwise the system is not at equilibrium), but that each component has its own characteristic amount at equilibrium. Statistical thermodynamics gives an expression for the chemical potential of a component ... [Pg.655]

The preceding derivation, being based on a definite mechanical picture, is easy to follow intuitively kinetic derivations of an equilibrium relationship suffer from a common disadvantage, namely, that they usually assume more than is necessary. It is quite possible to obtain the Langmuir equation (as well as other adsorption isotherm equations) from examination of the statistical thermodynamics of the two states involved. [Pg.606]

From the third law of thermodynamics, the entiopy 5 = 0 at 0 K makes it possible to calculate S at any temperature from statistical thermodynamics within the hamionic oscillator approximation (Maczek, 1998). From this, A5 of formation can be found, leading to A/G and the equilibrium constant of any reaction at 298 K for which the algebraic sum of AyG for all of the constituents is known. A detailed knowledge of A5, which we already have, leads to /Gq at any temperature. Variation in pressure on a reacting system can also be handled by classical thermodynamic methods. [Pg.322]

Several methods have been developed for the quantitative description of such systems. The partition function of the polymer is computed with the help of statistical thermodynamics which finally permits the computation of the degree of conversion 0. In the simplest case, it corresponds to the linear Ising model according to which only the nearest segments interact cooperatively149. The second possibility is to start from already known equilibrium relations and thus to compute the relevant degree of conversion 0. [Pg.186]

Introduction.—Statistical physics deals with the relation between the macroscopic laws that describe the internal state of a system and the dynamics of the interactions of its microscopic constituents. The derivation of the nonequilibrium macroscopic laws, such as those of hydrodynamics, from the microscopic laws has not been developed as generally as in the equilibrium case (the derivation of thermodynamic relations by equilibrium statistical mechanics). The microscopic analysis of nonequilibrium phenomena, however, has achieved a considerable degree of success for the particular case of dilute gases. In this case, the kinetic theory, or transport theory, allows one to relate the transport of matter or of energy, for example (as in diffusion, or heat flow, respectively), to the mechanics of the molecules that make up the system. [Pg.1]

One can write for Eq. (7-49) an expression for the equilibrium constant. Statistical thermodynamics allows its formulation in terms of partition functions ... [Pg.170]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

The aim of this section is to give the steady-state probability distribution in phase space. This then provides a basis for nonequilibrium statistical mechanics, just as the Boltzmann distribution is the basis for equilibrium statistical mechanics. The connection with the preceding theory for nonequilibrium thermodynamics will also be given. [Pg.39]

Thus far we have explored the field of classical thermodynamics. As mentioned previously, this field describes large systems consisting of billions of molecules. The understanding that we gain from thermodynamics allows us to predict whether or not a reaction will occur, the amount of heat that will be generated, the equilibrium position of the reaction, and ways to drive a reaction to produce higher yields. This otherwise powerful tool does not allow us to accurately describe events at a molecular scale. It is at the molecular scale that we can explore mechanisms and reaction rates. Events at the molecular scale are defined by what occurs at the atomic and subatomic scale. What we need is a way to connect these different scales into a cohesive picture so that we can describe everything about a system. The field that connects the atomic and molecular descriptions of matter with thermodynamics is known as statistical thermodynamics. [Pg.77]

There are three approaches that may be used in deriving mathematical expressions for an adsorption isotherm. The first utilizes kinetic expressions for the rates of adsorption and desorption. At equilibrium these two rates must be equal. A second approach involves the use of statistical thermodynamics to obtain a pseudo equilibrium constant for the process in terms of the partition functions of vacant sites, adsorbed molecules, and gas phase molecules. A third approach using classical thermodynamics is also possible. Because it provides a useful physical picture of the molecular processes involved, we will adopt the kinetic approach in our derivations. [Pg.173]

The examples cited above are only two of the many possible cases of H-bond isomerization. Because of the low kinetic barriers separating these species, equilibration of H-bonded isomer populations to limiting thermodynamic values is generally expected to be much faster than for covalent isomers. Methods of quantum statistical thermodynamics can be used to calculate partition functions and equilibrium population distributions for H-bonded isomers,41 just as in the parallel case for covalent isomers and conformers. [Pg.607]

Eq. (14), which was originally postulated by Zimmerman and Brittin (1957), assumes fast exchange between all hydration states (i) and neglects the complexities of cross-relaxation and proton exchange. Equation (15) is consistent with the Ergodic theorem of statistical thermodynamics, which states that at equilibrium, a time-averaged property of an individual water molecule, as it diffuses between different states in a system, is equal to a... [Pg.61]

Abstract The statistical thermodynamic theory of isotope effects on chemical equilibrium constants is developed in detail. The extension of the method to treat kinetic isotope effects using the transition state model is briefly described. [Pg.77]

The understanding of isotope effects on chemical equilibria, condensed phase equilibria, isotope separation, rates of reaction, and geochemical and meteorological phenomena, share a common foundation, which is the statistical thermodynamic treatment of isotopic differences on the properties of equilibrating species. For that reason the theory of isotope effects on equilibrium constants will be explored in considerable detail in this chapter. The results will carry over to later chapters which treat kinetic isotope effects, condensed phase phenomena, isotope separation, geochemical and biological fractionation, etc. [Pg.77]

The chapter starts with a brief review of thermodynamic principles as they apply to the concept of the chemical equilibrium. That section is followed by a short review of the use of statistical thermodynamics for the numerical calculation of thermodynamic equilibrium constants in terms of the chemical potential (often designated as (i). Lastly, this statistical mechanical development is applied to the calculation of isotope effects on equilibrium constants, and then extended to treat kinetic isotope effects using the transition state model. These applications will concentrate on equilibrium constants in the ideal gas phase with the molecules considered in the rigid rotor, harmonic oscillator approximation. [Pg.77]

The concentration of the activated complex may be calculated by statistical thermodynamics in terms of the reactant concentrations and an equilibrium constant [1, 6], If the reaction scheme is written as... [Pg.48]


See other pages where Statistical thermodynamics equilibria is mentioned: [Pg.460]    [Pg.418]    [Pg.159]    [Pg.248]    [Pg.176]    [Pg.723]    [Pg.248]    [Pg.355]    [Pg.277]    [Pg.66]    [Pg.357]    [Pg.198]    [Pg.13]    [Pg.139]    [Pg.101]    [Pg.86]    [Pg.349]    [Pg.3]    [Pg.298]    [Pg.325]    [Pg.127]    [Pg.16]    [Pg.28]    [Pg.146]    [Pg.138]    [Pg.39]    [Pg.48]    [Pg.233]    [Pg.285]   
See also in sourсe #XX -- [ Pg.654 , Pg.655 , Pg.656 , Pg.657 ]




SEARCH



Equilibrium statistical

Equilibrium thermodynamics

Statistical thermodynamic

Statistical thermodynamics

Thermodynamics Equilibrium/equilibria

© 2024 chempedia.info