Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equatorial radical

Rychnovsky demonstrated that the latter explanation is correct in reductive decyanations, the intermediate radical equilibrates to the most stable (axial) radical, and this equilibration determines the stereochemical outcome. Reductive decyanation of a 52 48 mixture of cyanohydrin acetonides 22 provided the 5yn-product 25 with 99 1 selectivity (Scheme 4). Ab initio calculations revealed a ca. 3.5 kcal/mol enthalpy difference between the axial and equatorial radical... [Pg.56]

Generally, the reactions are carried out in refluxing benzene solution, since the yield in benzene is better than that in other solvents. Probably, the radicals formed may be somewhat stabilized by the weak orbital-orbital interaction between the radicals and benzene. However, from the environmental point of view, toluene or dioxane is recently used. As substrates, alkyl bromides or alkyl iodides are used, and the reactivity increases in the order prim-alkyl < seoalkyl < te/t-alkyl. Sugar anomeric bromide (3) is generally not so stable, so the reaction is carried out under irradiation conditions with a mercury lamp at room temperature (eqs. 4.2 and 4.3). There are two types of anomeric glycosyl radicals as shown in Figure 4.1. One is the axial radical [I], and the other is the equatorial radical [I ]. The axial radical is more nucleophilic than the equatorial radical due to the stereoelectronic effect, where this effect comes... [Pg.125]

The formed anomeric radical adopts both a form (equatorial radical) [I] and (3 form (axial radical) [II], and these are in equilibrium state. However, the (3 form radical is more reactive and nucleophilic, because of its orbital interaction between the singly occupied radical orbital and the axial lone-pair on the neighboring ring-oxygen atom (like aftfi-periplanar effect) [20-22]. Therefore, the (3 form radical (axial radical) [II] predominantly reacted with a hydrogen donor to generate p-O-glycoside. [Pg.201]

The y -0-mannopyranoside linkage is traditionally one of the most challenging anomeric linkages to form in carbohydrate chemistry. One popular solution to this problem has been to generate an equatorial radical and allow it to isomerize to its more stable axial position prior to quenching. [Pg.836]

This result shows than the initially added trichloromethyl group has little influence on the stereochemistry of the subsequent bromine atom-abstraction. The intermediate 2-(trichlor-omethyl)cyclohexyl radical presumably relaxes to the equatorial conformation faster than bromine-atom abstraction occurs. In contrast with addition to A -octahydronaphthalene, the addition is exclusively /ran -diaxial ... [Pg.713]

The rate-determining step in the formation of the x-lithio ethers is the formation of a carbon radical as a precursor to the anion. The intermediate radical in the tetrahydropyranyl system is expected to be nonplanar, to be capable of rapid equilibration between the quasiequatorial and quasiaxial epimers, and to exist largely or entirely in the axial configuration at — 78 °C. However, treatment of the a-phenylthio ether 4 with LDMAN at higher temperature in the presence of A, A, lV, ./V -tetramethylethylenediamine leads to the more stable equatorial epimer of the lithio ether 5 and, after addition to benzaldehyde, the axial- and equatorial-substituted products were obtained in a ratio of 13 87. [Pg.120]

The most direct evidence that stereoelectronic effects are also important in these reactions follows from the specificity observed in hydrogen atom abstraction from conformationally constrained compounds,18 60 C-H bonds adjacent to oxygen113"118 or nitrogen110 and which subtend a small dihedral angle with a lone pair orbital (<30°) are considerably activated in relation to those where the dihedral angle is or approaches 90°. Thus, the equatorial H in 20 is reported to be 12 times more reactive towards /-butoxy radicals than the axial 11 in 21.115... [Pg.33]

With the radical 29, even though loss of an equatorial hydrogen should be sterically less hindered and is favored thermodynamically (by relief of 1,3 interactions of the axial methyl), there is an 8-fold preference for loss of the axial hydrogen (at 100 ( i. The selectivity observed in the disproportionation of this and other substituted cyclohexyl radicals led Beckwith18 to propose that disproportionation is subject to stereoelectronic control which results in preferential breaking of the C-H bond which has best overlap with the orbital bearing the unpaired spin. [Pg.39]

The ESR spectrum of the thioxanthene S, S-dioxide radical anion itself shows that the two possible conformers coexist, since the two methylene protons are not equivalent. In the case of the 9-monoalkyl derivatives, the large coupling constant observed for the 9-proton leads to the conclusion that the 9-substituent is in the boat equatorial position as in II1 F Thus the radical anions and the neutral molecule display different conformations. The protons in the 9-position of the radical anions of cis-9-methylthioxanthene S-oxides (2, n — 1, R1 = H, R2 = CH3) have an appreciable coupling constant10 which suggests that these radical anions have the substituent in the pseudo-axial position. Furthermore, in the radical anions the S—O bond is pseudo-axial. These situations are exactly the opposite of that observed for the neutral compound. [Pg.1051]

Three- and pentacoordinate organic phosphorus compounds can be oxidized through a free radical Arbuzov reaction, i.e., formation and p-scission of a phosphoranyl radical (Scheme 24). The P-scission is regioselective homolysis occurs on a ligand located in an equatorial site. Both a- and P-scissions are strongly dependent on the strength (bond dissociation energy) of the cleaved... [Pg.58]

The anomeric configuration is set in the reductive lithiation step, which proceeds via a radical intermediate. Hyperconjugative stabilization favors axial disposition of the intermediate radical, which after another single electron reduction leads to a configurationally stable a-alkoxylithium intermediate. Protonation thus provides the j9-anomer. The authors were unable to determine the stereoselectivity of the alkylation step, due to difficulty with isolation. However, deuterium labeling studies pointed to the intervention of an equatorially disposed a-alkoxylithium 7 (thermodynamically favored due to the reverse anomeric effect) which undergoes alkylation with retention of configuration (Eq. 2). [Pg.53]

If the radical is square pyramidal (C4 ) Fe(CO)5+ (1), the principal axes of the g-matrix must be the molecular axes (the C4 axis and normals to the reflection planes). The iron atom and the carbon of the axial CO group would have the full symmetry of the group and so these hyperfine matrices would share principal axes with the g-matrix. The four equatorial carbonyl carbons, on the other hand, lie in reflection planes, but not on the C4-axis and so are symmetry-required to share only one principal axis with the g-matrix. In fact, the major matrix axes for the equatorial carbons are tilted slightly in the -z direction from the ideal locations along the x and y axes. The g-matrix suggests that the metal contribution is dz2 and the iron hyperfine matrix then can be used to estimate about 55% iron 3d and 34% axial carbon 2pz spin density. The spin density on the equatorial carbons then is mostly negative and due to spin polarization. [Pg.74]

In piperidine the electron lone-pair can occupy either an axial or an equatorial position in 1-methylpiperidine the axial orientation (lb) is favoured by 99 1 over the equatorial (la). PE spectra and ab initio calculations on methylpiperidines indicate that axial 2-methyl substituents lower the amine lone-pair ionization potential by about 0.26 eV, while equatorial 2-methyl substituents as well as methyl groups on carbon atoms 3 and 4 lower the lone-pair IP by less than 0.1 eV63. This establishes the mechanism of stabilization of the amine radical cation as hyperconjugative electron release, which is larger for CC bonds than for CH bonds. The anti-periplanar orientation of the nitrogen lone-pair and the vicinal C—Me bond (lc) is much more favourable for this type of interaction than the synclinal orientation (Id). [Pg.169]


See other pages where Equatorial radical is mentioned: [Pg.832]    [Pg.833]    [Pg.832]    [Pg.833]    [Pg.247]    [Pg.677]    [Pg.244]    [Pg.613]    [Pg.1053]    [Pg.30]    [Pg.57]    [Pg.82]    [Pg.333]    [Pg.359]    [Pg.404]    [Pg.1053]    [Pg.421]    [Pg.422]    [Pg.422]    [Pg.257]    [Pg.270]    [Pg.479]    [Pg.79]    [Pg.181]    [Pg.106]    [Pg.184]    [Pg.243]    [Pg.58]    [Pg.62]    [Pg.232]    [Pg.281]    [Pg.282]    [Pg.146]    [Pg.150]    [Pg.422]    [Pg.20]    [Pg.56]    [Pg.244]   
See also in sourсe #XX -- [ Pg.125 , Pg.201 ]




SEARCH



Equatorial

© 2024 chempedia.info