Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epichlorohydrin derivatives

Five hundred gram per batch with a bisphenol A-epichlorohydrin derived epoxy resin with an epoxide equivalent... [Pg.310]

The majority of 2-methylphenol is used in the production of novolak phenoHc resins. High purity novolaks based on 2-methylphenol are used in photoresist appHcations (37). Novolaks based on 2-methylphenol are also epoxidized with epichlorohydrin, yielding epoxy resins after dehydrohalogenation, which are used as encapsulating resins in the electronics industry. Other uses of 2-methylphenol include its conversion to a dinitro compound, 4,6-dinitro-2-methylphenol [534-52-1] (DNOC), which is used as a herbicide (38). DNOC is also used to a limited extent as a polymerization inhibitor in the production of styrene, but this use is expected to decline because of concerns about the toxicity of the dinitro derivative. [Pg.67]

Dimercapto-l,3,4-thiadiazole derivatives, accelerated by amines, are used to cross-link chlorinated polyethylene. Polyisobutylene containing brominated i ra-methylstyrene cure functionahty can be cross-linked in polymer blends with dimercapto-1,3,4-thiadiazole derivatives accelerated with thiuram disulfides. Trithiocyanuric acid is suggested for use in polyacrylates containing a chlorine cure site and in epichlorohydrin mbbers. [Pg.225]

Virtually all of the organo derivatives of CA are produced by reactions characteristic of a cycHc imide, wherein isocyanurate nitrogen (frequendy as the anion) nucleophilically attacks a positively polarized carbon of the second reactant. Cyanuric acid and ethylene oxide react neady quantitatively at 100°C to form tris(2-hydroxyethyl)isocyanurate [839-90-7] (THEIC) (48—52). Substitution of propylene oxide yields the hydroxypropyl analogue (48,49). At elevated temperatures (- 200° C). CA and alkylene oxides react in inert solvent to give A/-hydroxyalkyloxazohdones in approximately 70% yield (53). Alternatively, THEIC can be prepared by reaction of CA and 2-chloroethanol in aqueous caustic (52). THEIC can react further via its hydroxyl fiinctionahty to form esters, ethers, urethanes, phosphites, etc (54). Reaction of CA with epichlorohydrin in alkaline dioxane solution gives... [Pg.419]

Epichlorohydrin and Bisphenol A-Derived Resins. The most widely used epoxy resins are diglycidyl ethers of bisphenol A [25068-38-6] (1) derived from bisphenol A [80-05-7] and epichlorohydrin [106-89-8],... [Pg.362]

Epichlorohydrin and Bisphenol A-Derived Resins. Liquid epoxy resins maybe synthesized by a two-step reaction of an excess of epichl orohydrin to bisphenol A in the presence of an alkaline catalyst. The reaction consists initially in the formation of the dichi orohydrin of bisphenol A and further reaction by dehydrohalogenation of the intermediate product with a stoichiometric quantity of alkaH. [Pg.365]

Epichlorohydrin, the more expensive compound is derived from propylene by the sequence of reactions shown in Figure 26.2. [Pg.746]

Reaction of pyroc techol with epichlorohydrin in the presence of base affords the benzodioxan derivative, 136, (The reaction may well involve initial displacement of halogen by phenoxide followed by opening of the oxirane by the anion from the second phenolic group.) Treatment of the alcohol with thio-nyl chloride gives the corresponding chloro compound (137). Displacement of halogen by means of diethylamine affords piper-oxan (138), a compound with a-sympathetic blocking activity. [Pg.352]

Bepridil (59) blocks the slow calcium channel and serves as an antianginal agent and a vasodilator. In its synthesis, alcohol (derived from epichlorohydrin) is converted to the corresponding chloride with thionyl chloride and displaced with the sodium salt of ]i-benzylaniline to give bepridil (59) °... [Pg.46]

Various bioisosteric replacements for a phenolic hydroxyl have been explored. One such, a lactam NH, is incorporated into the design of the 3-adrenergic blocker, carteolol O)- The fundamental synthon is carbostyril derivative K This is reacted in the usual manner with epichlorohydrin to give which is in turn reacted with t-butylamine to complete the synthesis of carteolol (3 ), a drug that appears to have relatively reduced nonspecific myocardial depressant action. Carrying this de-... [Pg.183]

A somewhat more complex theophylline derivative includes both the purinone nucleus and a piperazine side chain more commonly associated with HI antihistaminic compounds. The starting epoxide, 66, is available from treatment of the anion of purinone 65 with epichlorohydrin. Alkylation of the epoxide with monosubstituted piperazine derivative 67, leads to tazifylline (68) [11]. [Pg.165]

Void-free phenolic networks can be prepared by crosslinking novolacs with epoxies instead of HMTA. A variety of difunctional and multifunctional epoxy reagents can be used to generate networks with excellent dielectric properties.2 One example of epoxy reagents used in diis manner is the epoxidized novolac (Fig. 7.34) derived from the reaction of novolac oligomers with an excess of epichlorohydrin. [Pg.411]

Epoxyfunctional siloxanes are also useful as softeners. These may be derived from polysiloxane (10.231) or from aminopolysiloxanes (10.232). Further possibilities are represented by the polyalkoxylated epoxyfunctional silicones (10.233) and polyalkoxylated aminofunctional silicones (10.234). However, it has been pointed out [485] that the reaction of epichlorohydrin with aminopolysiloxanes is not very specific, since primary and secondary amine groups are usually randomly epoxidised resulting in viscous products that... [Pg.257]

Addition of an aqueous solution of PEG to a saturated aqueous solution of a-CD at room temperature did not lead to complex formation unless the average molecular weight of PEG exceeded 200 [46]. Moreover, carbohydrate polymers such as dextran and pullulan failed to precipitate complexes with PEG, and the same was true for amylose, glucose, methyl glucose, maltose, maltotriose, cyclodextrin derivatives, such as glucosyl-a-CD and maltosyl-a-CD, and water-soluble polymers of a-CD crosslinked by epichlorohydrin. These facts suggested to Harada et al. the direction for further research. [Pg.145]

Figure 25.9 Epichlorohydrin can be used to activate the hydroxyl group of mPEG, creating an epoxy derivative. Reaction with amine-containing molecules yields secondary amine bonds. Figure 25.9 Epichlorohydrin can be used to activate the hydroxyl group of mPEG, creating an epoxy derivative. Reaction with amine-containing molecules yields secondary amine bonds.
Many companies have said that if an alternative route to a derivative was economically justifiable that would be used in preference to a chlorine route. This has already had an impact on the technology of choice in some production routes to isocyanates, polycarbonate, propylene oxide and epichlorohydrin. [Pg.28]

The cationic ring-opening polymerization of epichlorohydrin in conjunction with a glycol or water as a modifier produced hydroxyl-terminated epichlorohydrin (HTE) liquid polymers (1-2). Hydroxyl-terminated polyethers of other alkylene oxides (3 4), oxetane and its derivatives (5 6), and copolymers of tetrahydrofuran (7-15) have also been reported. These hydroxyl-terminated polyethers are theoretically difunctional and used as reactive prepolymers. [Pg.199]


See other pages where Epichlorohydrin derivatives is mentioned: [Pg.597]    [Pg.631]    [Pg.319]    [Pg.294]    [Pg.35]    [Pg.597]    [Pg.631]    [Pg.319]    [Pg.294]    [Pg.35]    [Pg.517]    [Pg.347]    [Pg.498]    [Pg.5]    [Pg.19]    [Pg.66]    [Pg.75]    [Pg.54]    [Pg.485]    [Pg.35]    [Pg.558]    [Pg.53]    [Pg.117]    [Pg.500]    [Pg.187]    [Pg.299]    [Pg.79]    [Pg.948]    [Pg.26]    [Pg.558]    [Pg.294]    [Pg.83]    [Pg.645]    [Pg.145]    [Pg.335]   


SEARCH



Epichlorohydrin

Epichlorohydrine

Epichlorohydrins

© 2024 chempedia.info