Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes covalent bonding reactions

The biochemical basis for the toxicity of mercury and mercury compounds results from its ability to form covalent bonds readily with sulfur. Prior to reaction with sulfur, however, the mercury must be metabolized to the divalent cation. When the sulfur is in the form of a sulfhydryl (— SH) group, divalent mercury replaces the hydrogen atom to form mercaptides, X—Hg— SR and Hg(SR)2, where X is an electronegative radical and R is protein (36). Sulfhydryl compounds are called mercaptans because of their ability to capture mercury. Even in low concentrations divalent mercury is capable of inactivating sulfhydryl enzymes and thus causes interference with cellular metaboHsm and function (31—34). Mercury also combines with other ligands of physiological importance such as phosphoryl, carboxyl, amide, and amine groups. It is unclear whether these latter interactions contribute to its toxicity (31,36). [Pg.109]

By changing Ser 221 in subtilisin to Ala the reaction rate (both kcat and kcat/Km) is reduced by a factor of about 10 compared with the wild-type enzyme. The Km value and, by inference, the initial binding of substrate are essentially unchanged. This mutation prevents formation of the covalent bond with the substrate and therefore abolishes the reaction mechanism outlined in Figure 11.5. When the Ser 221 to Ala mutant is further mutated by changes of His 64 to Ala or Asp 32 to Ala or both, as expected there is no effect on the catalytic reaction rate, since the reaction mechanism that involves the catalytic triad is no longer in operation. However, the enzyme still has an appreciable catalytic effect peptide hydrolysis is still about 10 -10 times the nonenzymatic rate. Whatever the reaction mechanism... [Pg.217]

Many enzymes carry out their catalytic function relying solely on their protein structure. Many others require nonprotein components, called cofactors (Table 14.2). Cofactors may be metal ions or organic molecules referred to as coenzymes. Cofactors, because they are structurally less complex than proteins, tend to be stable to heat (incubation in a boiling water bath). Typically, proteins are denatured under such conditions. Many coenzymes are vitamins or contain vitamins as part of their structure. Usually coenzymes are actively involved in the catalytic reaction of the enzyme, often serving as intermediate carriers of functional groups in the conversion of substrates to products. In most cases, a coenzyme is firmly associated with its enzyme, perhaps even by covalent bonds, and it is difficult to... [Pg.430]

Some enzyme reactions derive much of their rate acceleration from the formation of covalent bonds between enzyme and substrate. Consider the reaction ... [Pg.508]

Catalysis by enzymes that proceeds via a unique reaction mechanism typically occurs when the transition state intermediate forms a covalent bond with the enzyme (covalent catalysis). The catalytic mechanism of the serine protease chymotrypsin (Figure 7-7) illustrates how an enzyme utilizes covalent catalysis to provide a unique reaction pathway. [Pg.63]

In our simulations of histone modifying enzymes, the computational approaches centered on the pseudobond ab initio quantum mechanical/molecular mechanical (QM/MM) approach. This approach consists of three major components [20,26-29] a pseudobond method for the treatment of the QM/MM boundary across covalent bonds, an efficient iterative optimization procedure which allows for the use of the ab initio QM/MM method to determine the reaction paths with a realistic enzyme environment, and a free energy perturbation method to take account... [Pg.342]

Another alternative is for the enzyme to actually form a covalent bond between the enzyme and the substrate. This direct, covalent participation of the enzyme in the chemical reaction is termed covalent catalysis. The enzyme uses one of its functional groups to react with the substrate. This enzyme-substrate bond must form fast, and the intermediates must be reasonably reactive if this kind of catalysis is going to give a rate acceleration. [Pg.107]

The partitioning of the system in a QM/MM calculation is simpler if it is possible to avoid separating covalently bonded atoms at the border between the QM and the MM regions. An example is the enzyme chorismate mutase [39] for which the QM region could include only the substrate, because the enzyme does not chemically catalyze this pericyclic reaction. In studies of enzyme mechanisms, however, this situation is exceptional, and usually it will be essential, or desirable, to include parts of the protein (for example catalytic residues) in the QM region of a QM/MM calculation, i.e. the boundary between the QM and MM regions will separate covalently bonded atoms (Fig. 6.1). [Pg.180]

Neuraminidases are enzymes present in viruses, bacteria, and parasites. They are implicated in serious diseases such as cholera, meningitis and pneumonia. Neuraminidase from influenza virus aids the transmission of the virus between cells and maintains viral infectivity. In different strains of influenza several amino acids are conserved, especially in the active site, giving rise to hopes of finding a single inhibitor (and so a drug) for all the neuraminidase enzymes from influenza strains. The crucial question is whether a covalent bond is formed between the enzyme and the reaction intermediate. [Pg.193]

The calculations found there was no covalent intermediate in the viral neuraminidase reaction and the intermediate was more likely to be hydroxylated directly. Because there is only a small energy difference between the two options (formation of a covalent bond or direct hydroxylation) Thomas et al. proposed it might be possible to design inhibitors covalently bound to the enzyme. [Pg.193]

As already discussed, a covalent immobilization can be performed via different chemical moieties on the protein surface. Because of that, protein molecules are immobilized in random orientation with at least one, but often several, covalent bonds to the matrix. As a result, the active site might be oriented toward the matrix surface and its accessibility to the substrate molecule hence significantly reduced. This results in a decrease of biological activity and consequently in lower binding capacity or decrease of reaction rate in the case of enzymes. [Pg.178]

The number of molecules with single electron orbitals, and therefore suitable for ESR, is limited due to the electron-sharing feature of the usual covalent bond. This tends to restrict its use to compounds containing transition metals and reactions involving free radicals. However, this does make ESR very useful for monitoring reactions involving metallo-enzymes or free radicals. [Pg.86]


See other pages where Enzymes covalent bonding reactions is mentioned: [Pg.117]    [Pg.450]    [Pg.143]    [Pg.319]    [Pg.324]    [Pg.226]    [Pg.233]    [Pg.208]    [Pg.509]    [Pg.117]    [Pg.121]    [Pg.8]    [Pg.50]    [Pg.52]    [Pg.52]    [Pg.238]    [Pg.63]    [Pg.28]    [Pg.29]    [Pg.202]    [Pg.215]    [Pg.217]    [Pg.238]    [Pg.136]    [Pg.513]    [Pg.504]    [Pg.452]    [Pg.453]    [Pg.341]    [Pg.546]    [Pg.19]    [Pg.557]    [Pg.15]    [Pg.37]    [Pg.7]    [Pg.120]    [Pg.136]    [Pg.350]   
See also in sourсe #XX -- [ Pg.1371 ]




SEARCH



Covalent bonding reactions

© 2024 chempedia.info