Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme methods reaction

Perez-Bendito, D. Silva, M. Kinetic Methods in Analytical Chemistry. Ellis Horwood Chichester, England, 1988. Additional information on the kinetics of enzyme catalyzed reactions maybe found in the following texts. [Pg.665]

Assays using equiUbrium (end point) methods are easy to do but the time requited to reach the end point must be considered. Substrate(s) to be measured reacts with co-enzyme or co-reactant (C) to produce products (P and Q) in an enzyme-catalyzed reaction. The greater the consumption of S, the more accurate the results. The consumption of S depends on the initial concentration of C relative to S and the equiUbrium constant of the reaction. A change in absorbance is usually monitored. Changes in pH and temperature may alter the equiUbrium constant but no serious errors are introduced unless the equihbrium constant is small. In order to complete an assay in a reasonable time, for example several minutes, the amount and therefore the cost of the enzyme and co-factor maybe relatively high. Sophisticated equipment is not requited, however. [Pg.38]

Assay of Enzymes In body fluids, enzyme levels aie measured to help in diagnosis and for monitoiing treatment of disease. Some enzymes or isoenzymes are predominant only in a particular tissue. When such tissues are damaged because of a disease, these enzymes or isoenzymes are Hberated and there is an increase in the level of the enzyme in the semm. Enzyme levels are deterrnined by the kinetic methods described, ie, the assays are set up so that the enzyme concentration is rate-limiting. The continuous flow analyzers, introduced in the early 1960s, solved the problem of the high workload of clinical laboratories. In this method, reaction velocity is measured rapidly the change in absorbance may be very small, but within the capabiUty of advanced kinetic analyzers. [Pg.40]

This chapter presents the implementaiton and applicable of a QM-MM method for studying enzyme-catalyzed reactions. The application of QM-MM methods to study solution-phase reactions has been reviewed elsewhere [44]. Similiarly, empirical valence bond methods, which have been successfully applied to studying enzymatic reactions by Warshel and coworkers [19,45], are not covered in this chapter. [Pg.222]

Lineweaver-Burk plot Method of analyzing kinetic data (growth rates of enzyme catalyzed reactions) in linear form using a double reciprocal plot of rate versus substrate concentration. [Pg.904]

Since X + In X is a transcendental function, Eq. (2-67) cannot be solved for [A], Two methods are usually used. The method of initial rates is the more common one, since it converts the differential equation into an algebraic one. Values of v(, determined as a function of [A]o, are fit to the equation given for v. This application to enzyme-catalyzed reactions will be taken up in Chapter 4. The other method regularly used relies on numerical integration these techniques are given in Chapter 5. [Pg.35]

Analytical Criteria for Clinical Enzyme Methods. The great variety of methods available for certain of the clinically useful enzymes can be confusing in the absence of criteria for assessing these methods. These criteria should be similar to those used to judge other quantitative clinical chemistry methods, and should also take into account the kinetic nature of the reaction. Some years ago, Amador and Wacker (17) suggested the following criteria, which are now widely us ... [Pg.185]

Monitoring enzyme catalyzed reactions by voltammetry and amperometry is an extremely active area of bioelectrochemical interest. Whereas liquid chromatography provides selectivity, the use of enzymes to generate electroactive products provides specificity to electroanalytical techniques. In essence, enzymes are used as a derivatiz-ing agent to convert a nonelectroactive species into an electroactive species. Alternatively, electrochemistry has been used as a sensitive method to follow enzymatic reactions and to determine enzyme activity. Enzyme-linked immunoassays with electrochemical detection have been reported to provide even greater specificity and sensitivity than other enzyme linked electrochemical techniques. [Pg.28]

King, E.I. and Altman, C., A schematic method of deriving rate laws for enzyme-catalyzed reactions,... [Pg.686]

Keywords Ab initio QM/MM method, Pseudobond approach, Enzyme catalysis, Reaction... [Pg.341]

Methods of plotting data obtained from enzyme catalyzed reactions, (a) Lineweaver-Burk plot, (b) Eadie or Hofstee plot, (c) Hanes plot. [Pg.230]

The kinetic data below were reported for an enzyme catalyzed reaction of the type E + S ES E + P. Since the data pertain to initial reaction rates, the reverse reaction may be neglected. Use a graphical method to determine the Michaelis constant and Fmax for this system at the enzyme concentration employed. [Pg.243]

After more than 20 years, Walde et al. (1994) returned in a way to coacervate experiments, although using other methods. Walde (from the Luisi group) repeated nucleotide polymerisation of ADP to give polyadenylic acid, catalysed by polynucleotide phosphorylase (PNPase). But instead of Oparin s coacervates, the Zurich group used micelles and self-forming vesicles. They were able to demonstrate that enzyme-catalysed reactions can take place in these molecular structures, which can thus serve as protocell models. Two different supramolecular systems were used ... [Pg.267]

As a consequence of the previous considerations Kieber et al. [75] have developed an enzymic method to quantify formic acid in non-saline water samples at sub-micromolar concentrations. The method is based on the oxidation of formate by formate dehydrogenase with corresponding reduction of /3-nicotinamide adenine dinucleotide (j6-NAD+) to reduced -NAD+(/3-NADH) jS-NADH is quantified by reversed-phase high performance liquid chromatography with fluorimetric detection. An important feature of this method is that the enzymic reaction occurs directly in aqueous media, even seawater, and does not require sample pre-treatment other than simple filtration. The reaction proceeds at room temperature at a slightly alkaline pH (7.5-8.5), and is specific for formate with a detection limit of 0.5 im (SIN = 4) for a 200 xl injection. The precision of the method was 4.6% relative standard deviation (n = 6) for a 0.6 xM standard addition of formate to Sargasso seawater. Average re-... [Pg.76]

Synthesis of sucrose 6 -phosphate by an enzymic method using uridine 5 -(a-D-glucopyranosyl diphosphate) plus D-glucose 6-phosphate has been reported.126-131 The first, unambiguous, chemical synthesis of sucrose 6 -phosphate was achieved by Buchanan and coworkers.18 The reaction of 2,3,4,6,l, 3, 4 -hepta-0-acetylsucrose, prepared by five steps of synthesis, with cyanoethyl phosphate in pyridine gave a crude product from which sucrose 6 -phosphate was isolated as the barium salt. [Pg.271]

In this chapter, a short introduction to DFT and to its implementation in the so-called ab initio molecular dynamics (AIMD) method will be given first. Then, focusing mainly on our own work, applications of DFT to such fields as the definition of structure-activity relationships (SAR) of bioactive compounds, the interpretation of the mechanism of enzyme-catalyzed reactions, and the study of the physicochemical properties of transition metal complexes will be reviewed. Where possible, a case study will be examined, and other applications will be described in less detail. [Pg.42]

To make QM studies of chemical reactions in the condensed phase computationally more feasible combined quantum me-chanical/molecular mechanical (QM/MM) methods have been developed. The idea of combined QM/MM methods, introduced first by Levitt and Warshell [17] in 1976, is to divide the system into a part which is treated accurately by means of quantum mechanics and a part whose properties are approximated by use of QM methods (Fig. 5.1). Typically, QM methods are used to describe chemical processes in which bonds are broken and formed, or electron-transfer and excitation processes, which cannot be treated with MM methods. Combined QM and MM methods have been extensively used to study chemical reactions in solution and the mechanisms of enzyme-catalyzed reactions. When the system is partitioned into the QM and MM parts it is assumed that the process requiring QM treatment is localized in that region. The MM methods are then used to approximate the effects of the environment on the QM part of the system, which, via steric and electrostatic interactions, can be substantial. The... [Pg.158]

Experimental studies on the effect of substrate concentration on the activity of an enzyme show consistent results. At low concentrations of substrate the rate of reaction increases as the concentration increases. At higher concentrations the rate begins to level out and eventually becomes almost constant, regardless of any further increase in substrate concentration. The choice of substrate concentration is an important consideration in the design of enzyme assays and an understanding of the kinetics of enzyme-catalysed reactions is needed in order to develop valid methods. [Pg.260]

In order to follow the progress of an enzyme-catalysed reaction it is necessary to measure either the depletion of the substrate or the accumulation of the product. This demands that either the substrate or the product show some measurable characteristic which is proportional to its concentration. This is not always the case and a variety of techniques have been developed in order to monitor enzyme reactions. In order to illustrate some of the methods and also to give an appreciation of the technical details and the calculations, three examples are given (Procedures 8.4 to 8.6) that use the enzyme D-amino acid oxidase (Table 8.4). [Pg.278]

Some enzyme-catalysed reactions result in the production or uptake of a gas and some of the earliest assay methods used this phenomenon as a basis for monitoring the reaction. Classically, Krebs, in elucidating the metabolism of glucose, used such methods. They measure either the pressure changes that... [Pg.282]

The use of spectrophotometry to monitor enzyme-catalysed reactions (Table 8.6) is a very convenient and popular method owing to the simplicity of the technique and the precision that is possible. The technique lends itself readily not only to temperature control using water-jacketed or electrically heated cell holders but also to the measurement of initial velocities by continuous monitoring and recording techniques or by automated analysis systems. [Pg.286]


See other pages where Enzyme methods reaction is mentioned: [Pg.1122]    [Pg.38]    [Pg.10]    [Pg.1122]    [Pg.158]    [Pg.258]    [Pg.96]    [Pg.193]    [Pg.197]    [Pg.200]    [Pg.5]    [Pg.227]    [Pg.673]    [Pg.30]    [Pg.105]    [Pg.111]    [Pg.156]    [Pg.198]    [Pg.985]    [Pg.64]    [Pg.168]    [Pg.170]    [Pg.177]    [Pg.188]    [Pg.123]    [Pg.260]    [Pg.293]    [Pg.300]   
See also in sourсe #XX -- [ Pg.53 , Pg.146 , Pg.198 ]




SEARCH



Enzyme methods

Enzymic methods aldol reaction

Reaction methods

© 2024 chempedia.info