Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enynes, carbonylation

Iwasawa et al. developed a tungsten-mediated benzannulation reaction (Scheme 15.15). On treatment of o-ethynylphenyl ketones 11 with 3 equiv of preformed W(C0)5(THF), followed by the addition of electron-rich alkenes 8, such as enam-ines and enol ethers, the corresponding naphthalenes 19 were produced together with W(CO)6 [26]. Ohe, Miki, and co-workers prepared pyranyUdene-metal complexes from conjugated enyne-carbonyl compounds using Mo, W, and Cr complexes, which were treated with dimethyl acetylenedicarboxylate to give benzene derivatives [27]. [Pg.388]

The lithium etiolate of acetaldehyde DMH has recently been utilized in the opening reaction of the ot-epoxide obtained by DM DO oxidation ofenol ether 142, to provide hemiacetal 143 after mild oxidative acid hydrolysis. The protected carbonyl functionality was subsequently used for the introduction of the trans enyne chain through a Wittig olefmation reaction to provide alcohol 144, which was then transformed into (+)-laurenyne (Scheme 8.37) [71]. [Pg.297]

Enynes 71 react with aldehydes 61 in the presence of the [Ni(COD)J/SIPr catalytic system to afford two distinct products 72 and 73 (Scheme 5.20) [20b], The enone 72 is derived from aldehyde addition with the alkyne moiety while the adduct 73 arises from the aldehyde addition with the alkene moiety. The product distribution is dependent on the substituent on either the alkyne or alkene moieties. The reaction between 71 and ketones 74 led to the unprecedented formation of pyrans 75 (Scheme 5.20). The reaction showed to be highly regioselective in aU the cases, the carbonyl carbon was bound to the olefin. [Pg.142]

The addition of a carbonylation step extended a pyrrole synthesis to pyrrole-2-acetic acid derivatives <06ASC2212>. Treatment of enyne amine 1 with palladium diiodide in the presence of CO and methanol produced pyrrole-2-acetic ester 2 via a 5-exo-dig cyclization, oxidative carbonylation, and isomerization. [Pg.135]

Under a pressure (20 bar) of carbon monoxide, carbonylative silylcarbocyclization of enyne 92 was examined in the presence of a cationic rhodium-BINAP catalyst (Scheme 31).86 Although the enantioselectivity is low, the five-membered carbocycle functionalized with an alkenylsilane moiety and a formyl group was obtained with high selectivity. [Pg.835]

Scheme 20.45 Synthesis and cyclization of carbonyl-substituted enyne-allenes. Scheme 20.45 Synthesis and cyclization of carbonyl-substituted enyne-allenes.
Scheme 21 Carbonylation of enynes bearing a carbonate function in the a-position of the triple bond... [Pg.123]

S)-(-)-CITRONELLOL from geraniol. An asymmetrically catalyzed Diels-Alder reaction is used to prepare (1 R)-1,3,4-TRIMETHYL-3-C YCLOHEXENE-1 -CARBOXALDEHYDE with an (acyloxy)borane complex derived from L-(+)-tartaric acid as the catalyst. A high-yield procedure for the rearrangement of epoxides to carbonyl compounds catalyzed by METHYLALUMINUM BIS(4-BROMO-2,6-DI-tert-BUTYLPHENOXIDE) is demonstrated with a preparation of DIPHENYL-ACETALDEHYDE from stilbene oxide. A palladium/copper catalyst system is used to prepare (Z)-2-BROMO-5-(TRIMETHYLSILYL)-2-PENTEN-4-YNOIC ACID ETHYL ESTER. The coupling of vinyl and aryl halides with acetylenes is a powerful carbon-carbon bond-forming reaction, particularly valuable for the construction of such enyne systems. [Pg.147]

Co complexes, Buchwald reported the Ti-catalyzed carbonylative coupling of enynes-the so-called Pauson-Khand-type reaction [28]-and realized the first such catalytic and enantioselective reaction using a chiral Ti complex [29]. Here, a variety of enynes were transformed into bicyclic cyclopentenones with good to high ee-values however, several steps were required to prepare the chiral Ti catalyst, while the low-valent complex proved to be so unstable that it had to be treated under oxygen-free conditions in a glove box. [Pg.285]

By contrast, in 2000 Shibata reported the Ir-catalyzed enantioselective Pauson-Khand-type reaction of enynes [30aj. The chiral Ir catalyst was readily prepared in situ from [lrCl(cod)]2 and tolBINAP (2,2 -bis(di-p-tolylphosphino)-l,T-binaphthyl), both of which are commercially available and air-stable, and the reaction proceeded under an atmospheric pressure of carbon monoxide. The Ir-catalyzed carbonylative coupling had a wide generality in enynes with various tethers (Z), substituents on the alkyne terminus (R ) and the olefinic moiety (R ). In the case of less-reactive enynes, a lower partial pressure of carbon monoxide achieved a higher yield and ee-value (Table 11.1) [30b]. [Pg.285]

Gyclization/hydrosilylation of enynes catalyzed by rhodium carbonyl complexes tolerated a number of functional groups, including acetate esters, benzyl ethers, acetals, tosylamides, and allyl- and benzylamines (Table 3, entries 6-14). The reaction of diallyl-2-propynylamine is noteworthy as this transformation displayed high selectivity for cyclization of the enyne moiety rather than the diene moiety (Table 3, entry 9). Rhodium-catalyzed enyne cyclization/hydrosilylation tolerated substitution at the alkyne carbon (Table 3, entry 5) and, in some cases, at both the allylic and terminal alkenyl carbon atoms (Equation (7)). [Pg.374]

Suisse and co-workers have studied the asymmetric cyclization/silylformylation of enynes employing catalytic mixtures of a rhodium(i) carbonyl complex and a chiral, non-racemic phosphine ligand. Unfortunately, only modest enantioselectivities were realized.For example, reaction of diethyl allylpropargylmalonate with dimethylphenyl-silane (1.2 equiv.) catalyzed by a 1 1 mixture of Rh(acac)(GO)2 and (i )-BINAP in toluene at 70 °G for 15 h under GO (20 bar) led to 90% conversion to form a 15 1 mixture of cyclization/silylformylation product 67 and cyclization/ hydrosilylation product 68. Aldehyde 67 was formed with 27% ee (Equation (46)). [Pg.395]


See other pages where Enynes, carbonylation is mentioned: [Pg.276]    [Pg.448]    [Pg.276]    [Pg.448]    [Pg.459]    [Pg.460]    [Pg.100]    [Pg.105]    [Pg.453]    [Pg.254]    [Pg.334]    [Pg.713]    [Pg.31]    [Pg.32]    [Pg.32]    [Pg.88]    [Pg.65]    [Pg.69]    [Pg.315]    [Pg.677]    [Pg.150]    [Pg.158]    [Pg.112]    [Pg.150]    [Pg.158]    [Pg.129]    [Pg.133]    [Pg.217]    [Pg.19]    [Pg.41]    [Pg.368]    [Pg.374]    [Pg.375]    [Pg.237]    [Pg.517]    [Pg.953]   


SEARCH



Enynes

© 2024 chempedia.info