Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Entropy, molecular

For certain polymers Rider has drawn solubility maps. Thus the area of solubility was represented by a pair of symmetric quarters of a plane lying in coordinates b,C. Values of parameters were defined from data for enthalpies of hydrogen bonds available from the earlier works. The model is a logical development of the Hansen method. A shortcoming of this model is in neglecting all other factors influencing solubility, namely dispersion and polar interactions, change of entropy, molecular mass of polymer and its phase condition. The model was developed as a three-dimensional dualistic model (see Section 4.1.5). 4.1.4 HANSEN S SOLUBILITY... [Pg.112]

Relative Standard Entropies Molecular Complexity For a given state of matter, entropy generally increases with increasing molecular complexity. For example, consider the standard entropies of the argon and nitrogen monoxide gas ... [Pg.834]

Molecular moments of inertia are about 10 g/cm thus 7 values for benzene, N2, and NH3 are 18, 1.4, and 0.28, respectively, in those units. For the case of benzene gas, a = 6 and n = 3, and 5rot is about 21 cal K mol at 25°C. On adsorption, all of this entropy would be lost if the benzene were unable to rotate, and part of it if, say, rotation about only one axis were possible (as might be the situation if the benzene was subject only to the constraint of lying flat... [Pg.583]

The following several sections deal with various theories or models for adsorption. It turns out that not only is the adsorption isotherm the most convenient form in which to obtain and plot experimental data, but it is also the form in which theoretical treatments are most easily developed. One of the first demands of a theory for adsorption then, is that it give an experimentally correct adsorption isotherm. Later, it is shown that this test is insufficient and that a more sensitive test of the various models requires a consideration of how the energy and entropy of adsorption vary with the amount adsorbed. Nowadays, a further expectation is that the model not violate the molecular picture revealed by surface diffraction, microscopy, and spectroscopy data, see Chapter VIII and Section XVIII-2 Steele [8] discusses this picture with particular reference to physical adsorption. [Pg.603]

Finally, it is perfectly possible to choose a standard state for the surface phase. De Boer [14] makes a plea for taking that value of such that the average distance apart of the molecules is the same as in the gas phase at STP. This is a hypothetical standard state in that for an ideal two-dimensional gas with this molecular separation would be 0.338 dyn/cm at 0°C. The standard molecular area is then 4.08 x 10 T. The main advantage of this choice is that it simplifies the relationship between translational entropies of the two- and the three-dimensional standard states. [Pg.646]

The standard entropy of adsorption AS2 of benzene on a certain surface was found to be -25.2 EU at 323.1 K the standard states being the vapor at 1 atm and the film at an area of 22.5 x T per molecule. Discuss, with appropriate calculations, what the state of the adsorbed film might be, particularly as to whether it is mobile or localized. Take the molecular area of benzene to be 22 A. ... [Pg.673]

Ref. 205). The two mechanisms may sometimes be distinguished on the basis of the expected rate law (see Section XVni-8) one or the other may be ruled out if unreasonable adsorption entropies are implied (see Ref. 206). Molecular beam studies, which can determine the residence time of an adsorbed species, have permitted an experimental decision as to which type of mechanism applies (Langmuir-Hinshelwood in the case of CO + O2 on Pt(lll)—note Problem XVIII-26) [207,208]. [Pg.722]

As we have seen, the third law of thermodynamics is closely tied to a statistical view of entropy. It is hard to discuss its implications from the exclusively macroscopic view of classical themiodynamics, but the problems become almost trivial when the molecular view of statistical themiodynamics is introduced. Guggenlieim (1949) has noted that the usefiihiess of a molecular view is not unique to the situation of substances at low temperatures, that there are other limiting situations where molecular ideas are helpfid in interpreting general experimental results ... [Pg.374]

The successful preparation of polymers is achieved only if tire macromolecules are stable. Polymers are often prepared in solution where entropy destabilizes large molecular assemblies. Therefore, monomers have to be strongly bonded togetlier. These links are best realized by covalent bonds. Moreover, reaction kinetics favourable to polymeric materials must be fast, so tliat high-molecular-weight materials can be produced in a reasonable time. The polymerization reaction must also be fast compared to side reactions tliat often hinder or preclude tire fonnation of the desired product. [Pg.2515]

Conformational Adjustments The conformations of protein and ligand in the free state may differ from those in the complex. The conformation in the complex may be different from the most stable conformation in solution, and/or a broader range of conformations may be sampled in solution than in the complex. In the former case, the required adjustment raises the energy, in the latter it lowers the entropy in either case this effect favors the dissociated state (although exceptional instances in which the flexibility increases as a result of complex formation seem possible). With current models based on two-body potentials (but not with force fields based on polarizable atoms, currently under development), separate intra-molecular energies of protein and ligand in the complex are, in fact, definable. However, it is impossible to assign separate entropies to the two parts of the complex. [Pg.133]

The thermodynamic properties that we have considered so far, such as the internal energy, the pressure and the heat capacity are collectively known as the mechanical properties and can be routinely obtained from a Monte Carlo or molecular dynamics simulation. Other thermodynamic properties are difficult to determine accurately without resorting to special techniques. These are the so-called entropic or thermal properties the free energy, the chemical potential and the entropy itself. The difference between the mechanical emd thermal properties is that the mechanical properties are related to the derivative of the partition function whereas the thermal properties are directly related to the partition function itself. To illustrate the difference between these two classes of properties, let us consider the internal energy, U, and the Fielmholtz free energy, A. These are related to the partition function by ... [Pg.327]

What distinguishes water from ordinary organic solvents and justifies the term hydrophobic interaction is the molecular origin of the effect, being entropy driven in pure water at room temperature and resulting primarily from the strong water-water interactions. [Pg.18]

Molecular enthalpies and entropies can be broken down into the contributions from translational, vibrational, and rotational motions as well as the electronic energies. These values are often printed out along with the results of vibrational frequency calculations. Once the vibrational frequencies are known, a relatively trivial amount of computer time is needed to compute these. The values that are printed out are usually based on ideal gas assumptions. [Pg.96]

Here we have the formation of the activated complex from five molecules of nitric acid, previously free, with a high negative entropy change. The concentration of molecular aggregates needed might increase with a fall in temperature in agreement with the characteristics of the reaction already described. It should be noticed that nitration in nitromethane shows the more common type of temperature-dependence (fig. 3.1). [Pg.38]

The variation of Cp for crystalline thiazole between 145 and 175°K reveals a marked inflection that has been attributed to a gain in molecular freedom within the crystal lattice. The heat capacity of the liquid phase varies nearly linearly with temperature to 310°K, at which temperature it rises more rapidly. This thermal behavior, which is not uncommon for nitrogen compounds, has been attributed to weak intermolecular association. The remarkable agreement of the third-law ideal-gas entropy at... [Pg.86]

When the film thickens beyond two or three molecular layers, the effect of surface structure is largely smoothed out. It should therefore be possible, as Hill and Halsey have argued, to analyse the isotherm in the multilayer region by reference to surface forces (Chapter 1), the partial molar entropy of the adsorbed film being taken as equal to that of the liquid adsorptive. By application of the 6-12 relation of Chapter 1 (with omission of the r" term as being negligible except at short distances) Hill was able to arrive at the isotherm equation... [Pg.89]

It is not particularly difficult to introduce thermodynamic concepts into a discussion of elasticity. We shall not explore all of the implications of this development, but shall proceed only to the point of establishing the connection between elasticity and entropy. Then we shall go from phenomenological thermodynamics to statistical thermodynamics in pursuit of a molecular model to describe the elastic response of cross-linked networks. [Pg.138]

A great many liquids have entropies of vaporization at the normal boiling point in the vicinity of this value (see benzene above), a generalization known as Trouton s rule. Our interest is clearly not in evaporation, but in the elongation of elastomers. In the next section we shall apply Eq. (3.21) to the stretching process for a statistical—and therefore molecular—picture of elasticity. [Pg.144]


See other pages where Entropy, molecular is mentioned: [Pg.39]    [Pg.467]    [Pg.342]    [Pg.280]    [Pg.254]    [Pg.94]    [Pg.71]    [Pg.535]    [Pg.25]    [Pg.467]    [Pg.39]    [Pg.467]    [Pg.342]    [Pg.280]    [Pg.254]    [Pg.94]    [Pg.71]    [Pg.535]    [Pg.25]    [Pg.467]    [Pg.399]    [Pg.403]    [Pg.482]    [Pg.713]    [Pg.1957]    [Pg.2411]    [Pg.2524]    [Pg.2556]    [Pg.2628]    [Pg.70]    [Pg.147]    [Pg.338]    [Pg.532]    [Pg.579]    [Pg.625]    [Pg.16]    [Pg.17]    [Pg.167]   
See also in sourсe #XX -- [ Pg.247 , Pg.248 , Pg.250 ]




SEARCH



A Molecular Interpretation of Entropy

A Theoretical Approach to Enthalpy-Entropy Compensation in Molecular Recognition

Enthalpy-entropy compensation effect, molecular recognition

Entropy flux, molecular

Entropy increase with temperature (molecular

Entropy molecular basis

Entropy molecular interpretation

Entropy molecular representation

Entropy molecular view

Molecular Dynamics The Entropy Problem

Molecular Kinetic Interpretation of Entropy

Molecular Tweezers as Synthetic Receptors Focussing on Volume and Entropy of Association

Molecular basis of entropy

Molecular dynamics configuration entropy

Molecular enthalpy-entropy compensation

Molecular entropy effects

Molecular interpretation of entropy

Molecular orientation entropy, solid surface

Molecular recognition entropy driven

Shannon Entropy in Quantum Mechanics, Molecular Dynamics, and Modeling

© 2024 chempedia.info