Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Entropic Death

In Chap. 2 we introduced the first and second laws of thermodynamics, which can be represented as follows  [Pg.158]

In Chap. 1, we introduced the book with a quote from Albert Einstein (Schilpp 1949), which read in part that classical thermodynamics... is the only physical theory of universal content concerning which I am convinced that, within the framework of the applicability of its basic concepts, it will never be overthrown. An important qualification to this statement is the phrase within the framework of the applicability of its basic concepts. The laws of thermodynamics are based on laboratory-scale experiments. To assume that such laws are applicable to the Universe is a big assumption. However, we have no evidence yet that contradicts this assumption on the scales of problems relevant to life. Moreover, there remain vast cosmological questions with no answers and definitely no understanding of implications even if we knew the answers. For instance, does the proton have a very long but finite radioactive half-life Does the neutrino have a very small but finite mass Is the Universe opened or closed with respect to expansion and gravitational contraction Also, the Universe may not be isolated with respect to matter/energy or it could be isolated and cyclical. [Pg.159]

It is worth considering life as we know it in the future of the Solar System and the Universe. The future is a continuation of the past, and a last consideration here of the far future possibilities for life can take a lesson from the very distant past. The first entropic threat to life came before there was any life. In the first hundreds of millions of years after the Big Bang, before there was life, before there were stars, the Universe had already entered a period where a diffuse gas was under 10 K and a near vacuum pervaded what already had become a vast expanse of a still-expanding and chilling and [Pg.160]

It was the formation of stars and then second-generation stars (such as our sun) with rocky planets that made life as we know it possible. Entropy still applied, yet the Universe became habitable in the period (which continues today) succeeding that first eon when it would have seemed entropic death was already gripping the Universe. Life was made possible by the nucleosynthesis of heavy elements and the condensation of solids and formation of planets where aqueous fluids could exist. [Pg.161]

Among places where condensates accreted into significant solid bodies, such as planets, habitable realms have always been rarer than places that were either too cold or too hot for life to exist. Much of our Solar System s mass is still far too hot for life. Most of the deep interiors of the gas giants and rocky planets are too hot, as is, of course, the Sun itself. Most of the surface area of solid bodies in the Solar System are too cold - the icy satellites of the outer planets and the myriad comets and Kuiper Belt Objects on the far outer fringes of the Solar System. In this sense, places like the surfaces of Earth and Mars and Europa s subsurface ocean are indeed very rare places. [Pg.161]


In Chap. 3 (Sect. 3.6), we discussed limitations of the FREZCHEM model that were broadly grouped under Pitzer-equation parameterization and mathematical modeling. There exists another limitation related to equilibrium principles. The foundations of the FREZCHEM model rest on chemical thermodynamic equilibrium principles (Chap. 2). Thermodynamic equilibrium refers to a state of absolute rest from which a system has no tendency to depart. These stable states are what the FREZCHEM model predicts. But in the real world, unstable (also known as disequilibrium or metastable) states may persist indefinitely. Life depends on disequilibrium processes (Gaidos et al. 1999 Schulze-Makuch and Irwin 2004). As we point out in Chap. 6, if the Universe were ever to reach a state of chemical thermodynamic equilibrium, entropic death would terminate life. These nonequilibrium states are related to reaction kinetics that may be fast or slow or driven by either or both abiotic and biotic factors. Below are four examples of nonequilibrium thermodynamics and how we can cope, in some cases, with these unstable chemistries using existing equilibrium models. [Pg.150]


See other pages where Entropic Death is mentioned: [Pg.158]    [Pg.159]    [Pg.159]    [Pg.161]    [Pg.779]    [Pg.158]    [Pg.159]    [Pg.159]    [Pg.161]    [Pg.779]    [Pg.238]   


SEARCH



Entrop

Entropic

© 2024 chempedia.info