Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Entrain

In the first class, azeotropic distillation, the extraneous mass-separating agent is relatively volatile and is known as an entrainer. This entrainer forms either a low-boiling binary azeotrope with one of the keys or, more often, a ternary azeotrope containing both keys. The latter kind of operation is feasible only if condensation of the overhead vapor results in two liquid phases, one of which contains the bulk of one of the key components and the other contains the bulk of the entrainer. A t3q)ical scheme is shown in Fig. 3.10. The mixture (A -I- B) is fed to the column, and relatively pure A is taken from the column bottoms. A ternary azeotrope distilled overhead is condensed and separated into two liquid layers in the decanter. One layer contains a mixture of A -I- entrainer which is returned as reflux. The other layer contains relatively pure B. If the B layer contains a significant amount of entrainer, then this layer may need to be fed to an additional column to separate and recycle the entrainer and produce pure B. [Pg.81]

Figure 3.10 A typical azeotropic distillation using an entrainer. Figure 3.10 A typical azeotropic distillation using an entrainer.
Scrubbers. Scrubbers are designed to contact a liquid with the particle-laden gas and entrain the particles with the liquid. They offer the obvious advantage that they can be used to remove gaseous as well as particulate pollutants. The gas stream may need to be cooled before entering the scrubber. Some of the more common types of scrubbers are shown in Fig. 11.2. [Pg.302]

Solids materials that are insoluble in hydrocarbon or water can be entrained in the crude. These are called bottom sediments and comprise fine particles of sand, drilling mud, rock such as feldspar and gypsum, metals in the form of minerals or in their free state such as iron, copper, lead, nickel, and vanadium. The latter can come from pipeline erosion, storage tanks, valves and piping systems, etc. whatever comes in contact with the crude oil. [Pg.327]

Coke (deposited on the catalyst) which is burned in the regenerator producing energy (electricity, steam) and the necessary heat for the reaction. Produced gases are cleansed when necessary of SOj and NO as well as particles of entrained catalyst. [Pg.385]

All the process water streams are collected, the entrained hydrocarbons decanted, and the water is sent to the waste water stripper. [Pg.405]

As well as preventing liquid carry over in the gas phase, gas carry undef must also be prevented in the liquid phase. Gas bubbles entrained in the liquid phase must be given the opportunity (or residence time) to escape to the gas phase under buoyancy forces. [Pg.245]

Spreading velocities v are on the order of 15-30 cm/sec on water [39], and v for a homologous series tends to vary linearly with the equilibrium film pressure, it", although in the case of alcohols a minimum seemed to be required for v to be appreciable. Also, as illustrated in Fig. IV-3, substrate water is entrained to some depth (0.5 mm in the case of oleic acid), a compensating counterflow being present at greater depths [40]. Related to this is the observation that v tends to vary inversely with substrate viscosity [41-43]. An analysis of the stress-strain situation led to the equation... [Pg.110]

Note 7. Butyllithium in hexane can be used in principle, but the yield is lower because during the evaporation of the hexane some of the cumulenic ether is entrained. [Pg.127]

Having assisted desolvation in this way, the carrier gas then carries solvent vapor produced in the initial nebulization with more produced in the desolvation chamber. The relatively large amounts of solvent may be too much for the plasma flame, causing instability in its performance and, sometimes, putting out the flame completely. Therefore, the desolvation chamber usually contains a second section placed after the heating section. In this second part of the desolvation chamber, the carrier gas and entrained vapor are strongly cooled to temperatures of about 0 to -10 C. Much of the vapor condenses out onto the walls of the cooled section and is allowed to drain away. Since this drainage consists only of solvent and not analyte solution, it is normally directed to waste. [Pg.152]

In some inlet devices, the volatile sample materials are first separated from entrained hydrogen gas or air by condensing them in a coolant bath. Subsequently, when all of the volatile sample components have been condensed and the hydrogen or air has been swept away, the sample is reheated and sent to the plasma flame. [Pg.396]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

Since each molecule has M/M entanglements, and each could entrain a different molecule, an upper limit for the number of couplings of order i is given by (M/Mg). ... [Pg.118]

Verification of the microbial retention efficiency of the membrane filters may be undertaken using either Hquid or aerosol challenge tests. A Hquid challenge test is more stringent. Furthermore, this test can provide retention information for process conditions such as extreme moisture after sterilization or air entrained with water drops. A Hquid challenge is performed using a protocol similar to that described for Hquid filtration. [Pg.142]

For each mol of urea produced in a total-recycle urea process, one mol of water is formed. It is usually discharged from the urea concentration and evaporation section of the plant. For example, a 1200 t/d plant discharges a minimum of 360 t/d of wastewater. With a barometric condenser in the vacuum section of the evaporation unit, the amount of wastewater is even higher. Small amounts of urea are usually found in wastewaters because of entrainment carry-over. [Pg.308]

Entrainment occurs when spray or froth formed on one tray enters the gas passages in the tray above. In moderate amounts, entrainment will impair the countercurrent action and hence drastically decrease the efficiency. If it happens in excessive amounts, the condition is called priming and will eventually flood the downcomers. [Pg.44]

The reaction rate is increased by using an entraining agent such as hexane, benzene, toluene, or cyclohexane, depending on the reactant alcohol, to remove the water formed. The concentration of water in the reaction medium can be measured, either by means of the Kad-Eischer reagent, or automatically by specific conductance and used as a control of the rate. The specific electrical conductance of acetic acid containing small amounts of water is given in Table 6. [Pg.66]

Under sufficient pressure to permit a Hquid phase at 55—56°C, the acetaldehyde monoperoxyacetate decomposes nearly quantitatively into anhydride and water in the presence of copper. Anhydride hydrolysis is unavoidable, however, because of the presence of water. When the product is removed as a vapor, an equiUbrium concentration of anhydride higher than that of acetic acid remains in the reactor. Water is normally quite low. Air entrains the acetic anhydride and water as soon as they form. [Pg.76]

The unit has virtually the same flow sheet (see Fig. 2) as that of methanol carbonylation to acetic acid (qv). Any water present in the methyl acetate feed is destroyed by recycle anhydride. Water impairs the catalyst. Carbonylation occurs in a sparged reactor, fitted with baffles to diminish entrainment of the catalyst-rich Hquid. Carbon monoxide is introduced at about 15—18 MPa from centrifugal, multistage compressors. Gaseous dimethyl ether from the reactor is recycled with the CO and occasional injections of methyl iodide and methyl acetate may be introduced. Near the end of the life of a catalyst charge, additional rhodium chloride, with or without a ligand, can be put into the system to increase anhydride production based on net noble metal introduced. The reaction is exothermic, thus no heat need be added and surplus heat can be recovered as low pressure steam. [Pg.77]

Direct, acid catalyzed esterification of acryhc acid is the main route for the manufacture of higher alkyl esters. The most important higher alkyl acrylate is 2-ethyIhexyi acrylate prepared from the available 0x0 alcohol 2-ethyl-1-hexanol (see Alcohols, higher aliphatic). The most common catalysts are sulfuric or toluenesulfonic acid and sulfonic acid functional cation-exchange resins. Solvents are used as entraining agents for the removal of water of reaction. The product is washed with base to remove unreacted acryhc acid and catalyst and then purified by distillation. The esters are obtained in 80—90% yield and in exceUent purity. [Pg.156]

The model of theoretical equiHbrium trays with entrainment is readily treated by computer with methods analogous to those used for the design of fractionating columns. [Pg.297]


See other pages where Entrain is mentioned: [Pg.81]    [Pg.83]    [Pg.282]    [Pg.312]    [Pg.158]    [Pg.321]    [Pg.2389]    [Pg.2390]    [Pg.2702]    [Pg.67]    [Pg.90]    [Pg.100]    [Pg.284]    [Pg.91]    [Pg.118]    [Pg.97]    [Pg.140]    [Pg.364]    [Pg.375]    [Pg.382]    [Pg.470]    [Pg.817]    [Pg.43]    [Pg.67]    [Pg.67]    [Pg.297]    [Pg.297]    [Pg.374]    [Pg.384]   
See also in sourсe #XX -- [ Pg.93 ]

See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Entrainer

Entrainers

Entrainment

Entrainments

© 2024 chempedia.info