Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Entanglement phase

Bulk mechanochemistry. Unlike linear polymers, the activation of mechanophore in nonlinear macromolecules in bulk is almost blank. Recently, May found that polymers with branched architectures activate more slowly than linear counterparts in solution, yet more quickly in solid-state tensile experiments [198]. In the bulk, more factors take part in the chain degradation event, including but not limited to chain entanglements, phase separation, crystallization, and supramolecular interactions. Inspections in this direction can aid the design of mechanoresponsive materials in the solid state. [Pg.195]

Solution Properties. Typically, if a polymer is soluble ia a solvent, it is soluble ia all proportions. As solvent evaporates from the solution, no phase separation or precipitation occurs. The solution viscosity iacreases continually until a coherent film is formed. The film is held together by molecular entanglements and secondary bonding forces. The solubiUty of the acrylate polymers is affected by the nature of the side group. Polymers that contain short side chaias are relatively polar and are soluble ia polar solvents such as ketones, esters, or ether alcohols. As the side chaia iacreases ia length the polymers are less polar and dissolve ia relatively nonpolar solvents, such as aromatic or aUphatic hydrocarbons. [Pg.164]

Cast material is stated to have a number average molecular weight of about 10. Whilst the Tg is about 104°C the molecular entanglements are so extensive that the material is incapable of flow below its decomposition temperature (approx. 170°C). There is thus a reasonably wide rubbery range and it is in this phase that such material is normally shaped. For injection moulding and extrusion much lower molecular weight materials are employed. Such polymers have a reasonable melt viscosity but marginally lower heat distortion temperatures and mechanical properties. [Pg.405]

Filter aids may be applied in one of two ways. The first method involves the use of a precoat filter aid, which can be applied as a thin layer over the filter before the suspension is pumped to the apparatus. A precoat prevents fine suspension particles from becoming so entangled in the filter medium that its resistance becomes exces-sive. In addition it facilitates the removal of filter cake at the end of the filtration cycle. The second application method involves incorporation of a certain amount of the material with the suspension before introducing it to the filter. The addition of filter aids increases the porosity of the sludge, decreases its compressibility, and reduces the resistance of the cake. In some cases the filter aid displays an adsorption action, which results in particle separation of sizes down to 0.1 /i. The adsorption ability of certain filter aids, such as bleached earth and activated charcoals, is manifest by a decoloring of the suspension s liquid phase. This practice is widely used for treating fats and oils. The properties of these additives are determined by the characteristics... [Pg.106]

Appropriately, this was called the Folded Chain Theory and is illustrated in Fig. A.ll. There are several proposals to account for the co-existence of crystalline and amorphous regions in the latter theory. In one case, the structure is considered to be a totally crystalline phase with defects. These defects which include such features as dislocations, loose chain ends, imperfect folds, chain entanglements etc, are regarded as the diffuse (amorphous) regions viewed in X-ray diffraction studies. As an alternative it has been suggested that crystalline... [Pg.421]

The mechanical properties of ionomers are generally superior to those of the homopolymer or copolymer from which the ionomer has been synthesized. This is particularly so when the ion content is near to or above the critical value at which the ionic cluster phase becomes dominant over the multiplet-containing matrix phase. The greater strength and stability of such ionomers is a result of efficient ionic-type crosslinking and an enhanced entanglement strand density. [Pg.152]

Coran and Patel [33] selected a series of TPEs based on different rubbers and thermoplastics. Three types of rubbers EPDM, ethylene vinyl acetate (EVA), and nitrile (NBR) were selected and the plastics include PP, PS, styrene acrylonitrile (SAN), and PA. It was shown that the ultimate mechanical properties such as stress at break, elongation, and the elastic recovery of these dynamically cured blends increased with the similarity of the rubber and plastic in respect to the critical surface tension for wetting and with the crystallinity of the plastic phase. Critical chain length of the rubber molecule, crystallinity of the hard phase (plastic), and the surface energy are a few of the parameters used in the analysis. Better results are obtained with a crystalline plastic material when the entanglement molecular length of the... [Pg.641]

The foregoing equations all express the multiphase viscosity as a function of the solids content, without any recourse to liquid parameters. A more realistic portrayal of the physical situation would include the fluid dynamic picture that compensates for entanglement and absorbed liquids carried along with the solid phase, thus effectively decreasing the liquid volume. An equation applicable to this case is [24] ... [Pg.708]

Various types of power law relaxation have been observed experimentally or predicted from models of molecular motion. Each of them is defined in its specific time window and for specific molecular structure and composition. Examples are dynamically induced glass transition [90,161], phase separated block copolymers [162,163], polymer melts with highly entangled linear molecules of uniform length [61,62], and many others. A comprehensive review on power law relaxation has been recently given by Winter [164],... [Pg.225]

The crystallization process of flexible long-chain molecules is rarely if ever complete. The transition from the entangled liquid-like state where individual chains adopt the random coil conformation, to the crystalline or ordered state, is mainly driven by kinetic rather than thermodynamic factors. During the course of this transition the molecules are unable to fully disentangle, and in the final state liquid-like regions coexist with well-ordered crystalline ones. The fact that solid- (crystalline) and liquid-like (amorphous) regions coexist at temperatures below equilibrium is a violation of Gibb s phase rule. Consequently, a metastable polycrystalline, partially ordered system is the one that actually develops. Semicrystalline polymers are crystalline systems well removed from equilibrium. [Pg.256]


See other pages where Entanglement phase is mentioned: [Pg.11]    [Pg.11]    [Pg.12]    [Pg.11]    [Pg.11]    [Pg.12]    [Pg.2538]    [Pg.636]    [Pg.284]    [Pg.306]    [Pg.360]    [Pg.415]    [Pg.499]    [Pg.346]    [Pg.13]    [Pg.44]    [Pg.146]    [Pg.147]    [Pg.311]    [Pg.313]    [Pg.657]    [Pg.676]    [Pg.917]    [Pg.31]    [Pg.35]    [Pg.156]    [Pg.171]    [Pg.121]    [Pg.461]    [Pg.138]    [Pg.142]    [Pg.188]    [Pg.204]    [Pg.533]    [Pg.904]    [Pg.196]    [Pg.338]    [Pg.116]    [Pg.31]    [Pg.67]    [Pg.201]    [Pg.206]    [Pg.59]   
See also in sourсe #XX -- [ Pg.318 ]




SEARCH



Entanglements

© 2024 chempedia.info