Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enols, heterocyclic, methylation

Related a,p-Unsaturated Esters. Similar a,p-unsaturated esters bearing a heterocyclic chiral auxiliary of a-amino acid origin at the p-position are known and have been utilized in asymmetric synthesis. Effective asymmetric conjugate additions of cuprates to (2), (3), and (5)J epoxidations of (3), and dipolar cycloadditions of (2) have been reported. Although oxazoli-dine (4) is only obtained as an 86 14 equilibrating mixture of stereoisomers, reactions with the lithium (Z)-enolate of methyl N-benzylideneglycinate (see Ethyl N-Benzylideneglycinate) are exclusively diastereoselective. [Pg.414]

Nucleophilic addition of ester enolates to enantiopure nitrones, followed by cyclization of the resulting hydro-xylamine, is a general approach to isoxazolidin-5-ones and can be applied to the stereoselective synthesis of these heterocycles <2005CRC775>. In some cases, the cyclization occurs spontaneously under the reaction conditions. For example, the addition of the sodium enolate of methyl acetate to chiral nitrone 551 gave directly the isoxazolidin-5-ones 552 in quantitative yield and high ty -diastereoselectivity (Equation 91) <1998CC493>. [Pg.458]

The alkylation of O-silylated dienolates with 1,3-dithienium tetrafluoroborate shows useful y-selectivity [equation (59)]. The y-alkylated products are selectively protected 1,5-dicarbonyl compounds. Unsaturated 1,5-diketones, precursors of various heterocycles, can be prepared by the reaction of the potassium enolates of methyl ketones with acyl keten dithioacetals [equation (60)]. ... [Pg.88]

As expected, heterocyclic enols and potential enols (i.e, compounds existing mainly in the CH form) behave toward diazomethane similarly to the open chain and isocyclic enols, i.e. they form enol methyl ethers by reactions of the SnI type (cf. footnote 29). Examples of this behavior are barbituric acid, picrolonic acid, dchydroacetic acid (64), 3-methyl-l-phenylpyrazolin-5-one, 1-phenylpyrazoli-dine-3,5-dione, 1,2-diphenylpyrazolidine-3,5-dionc, 3-hydroxy-... [Pg.274]

Hydroxypyridine (86, R = H) and its derivatives also belong to the class of heterocyclic enols. In benzene and dioxane, 3-hydroxy-pyridine occurs as the neutral molecule (and not as a betaine).Its reaction with diazomethane, in heterogeneous media, gives a mixture of 3-methoxypyridine (86, R = Me) (10%) and l-methyl-3-hydroxy-pyridinium betaine (87) (30%If tert-butanol is used as a... [Pg.279]

Indazoles can be considered as either azaindoles or azaisoindoles depending on the reader s prejudice. Benzydamine (54) represents a drug with this heterocyclic nucleus. Alkylation of the amine of anthranilic acid methyl ester with benzyl chloride in the presence of sodium acetate gives 52. Treatment with nitrous acid leads to the nitrosoamine, which cyclizes spontaneously to the 3-ketoindazole system, 53. This intermediate forms an ether of its enol form on heating the sodium salt with 3-dimethylaminopropyl chloride. There is thus obtained benzydamine (54), a fairly potent nonsteroidal antiinflammatory agent with significant antipyretic and analgesic properties. [Pg.323]

In THF at -20°C the N-trimethylsilylated 2-pyrrolidinone 388 is converted by LDA into the a-anion which, on reaction with 1949 and subsequent acidification with AcOH, gives 43% 3-hydroxy-2-pyrrolidinone 1962 [150]. Lithium enolates of ketones such as camphor react with BTSP 1949 to give >95% of a mixture of exo-and mdo-2-hydroxycamphor [151]. Lithiated methyl heterocycles such as lithiated 2-methylpyridine 1963 are converted into mixtures of the 0-SiMe3 1964 and C-SiMe3 1965 compounds and C-methylated compounds such 1966 [152]. 2-Lithioto-luene 1967 is oxidized by 1949 into 1968 [140, 145] (Scheme 12.42). [Pg.286]

Commensurately with the development of various catalyst systems, the Pd-catalyzed G-O cross-coupling has found a number of synthetic applications. Examples include the syntheses of the protein kinase G (PKC) activator (+)-decursin,104 the natural product heliannuol E,105 a chiral 2-methyl chroman,106 and a series of aryloxy and alkoxy porphyrins.107 The Buchwald-Hartwig coupling has also been utilized in the preparation of a heterocycle library.108 Intramolecular O-arylation has also been achieved in the reactions of enolates with aryl halides leading to benzofur-ans.109,110 Finally, a double cross-coupling between an 0-dibromobenzene and a glycol has also been applied for the preparation of benzodioxanes (Equation (16)).1... [Pg.656]

A more traveled route to the absolute configuration represented by cyclohexa-1,4-diene 8 involves Birch reduction-alkylation of benzoxazepinone 9.2.5 heterocycle is best prepared by the base-induced cyclization of the amide obtained from 2-fiuorobenzoyl chloride and (5)-pyrrolidine-2-metha-nol. o The molecular shape of enolate 10 is such that the hydrogen at the stereogenic center provides some shielding of the a-face of the enolate double bond. Thus, alkylation occurs primarily at the 3-face of 10 to give 11 as the major diastereomer. The diastereoselectivity for alkylation with methyl iodide is only 85 15, but with more sterically demanding alkyl halides such as ethyl iodide, allyl bromide, 4-bromobut-1-ene etc., diastereoselectivities are greater than 98 2. [Pg.2]

Regioselective enolization toward the nitrogen-bearing carbon in an oxazolinyl-methyl ketone derived from aspartic acid has been observed [48], The nitrogen atom of the heterocycle is conjoint with the carbonyl, therefore the creation of a conjugate system via enolization is favorable. [Pg.92]

In 1997, the first truly catalytic enantioselective Mannich reactions of imines with silicon enolates using a novel zirconium catalyst was reported [9, 10]. To solve the above problems, various metal salts were first screened in achiral reactions of imines with silylated nucleophiles, and then, a chiral Lewis acid based on Zr(IV) was designed. On the other hand, as for the problem of the conformation of the imine-Lewis acid complex, utilization of a bidentate chelation was planned imines prepared from 2-aminophenol were used [(Eq. (1)]. This moiety was readily removed after reactions under oxidative conditions. Imines derived from heterocyclic aldehydes worked well in this reaction, and good to high yields and enantiomeric excesses were attained. As for aliphatic aldehydes, similarly high levels of enantiomeric excesses were also obtained by using the imines prepared from the aldehydes and 2-amino-3-methylphenol. The present Mannich reactions were applied to the synthesis of chiral (3-amino alcohols from a-alkoxy enolates and imines [11], and anti-cc-methyl-p-amino acid derivatives from propionate enolates and imines [12] via diastereo- and enantioselective processes [(Eq. (2)]. Moreover, this catalyst system can be utilized in Mannich reactions using hydrazone derivatives [13] [(Eq. (3)] as well as the aza-Diels-Alder reaction [14-16], Strecker reaction [17-19], allylation of imines [20], etc. [Pg.144]

A series of similar heterocyclizations were performed with 2-chloroquinoxaline 190. Thus, furoquinoxaline 192 was obtained in 15% yield by treating 190 with methyl-t-butylketone enolate 191 (Scheme 57) (82JOC1036). The pathway includes C-nucleophilic attack of the enolate ion on unsubstituted atom C(3) followed by intramolecular replacement of chlorine in dianionic aH-adduct 193. Finally,... [Pg.86]

Nitrogen heterocycles such as azirines and aziridines are also used effectively as building blocks for the synthesis of a,a-disubstituted amino acids. The aziridine derivative 33 is prepared in optically pure form by addition of the lithium enolate 32 to the chiral sulfinimide 31 (Scheme 7) [42]. After oxidation of the sulfoxide to the sulfone and subsequent hydration, the a-methylated phenylalanine derivative 34 is obtained in good overall yield. [Pg.30]

The pKa of the methylene protons of 7 is close to that of cyanacetic ester. Thus, it was interesting to compare the reactions of these two species. We found that 7 can be acylated by various carboxylic acid halides, leading to compound 11. According to IR and NMR data 11 exists mostly as the enol-form, due to the influence of the carboranyl substituent, which strongly stabilizes conjugated double bonds.13 Compound 11 is a useful synthon for the preparation of heterocyclic compounds. It can be methylated, chlorinated and acylated twice ( compound 13). Compound 13 gives an adduct with phenylhydrazine (scheme 6). [Pg.240]

Carboranyl acid halides can be very easy prepared. We have studied the acylation of malononitrile and acetoacetic ester by methylcarboranyl carboxylic acid chloride (15). The reaction with malononitrile leads to the compound 17a, which exists also as a enol form, similar to compound 13. Compound 17a can be methylated to give compound 17b, a novel synthon for the preparation of wide range of heterocyclic compounds (Scheme 7). [Pg.240]


See other pages where Enols, heterocyclic, methylation is mentioned: [Pg.231]    [Pg.231]    [Pg.74]    [Pg.520]    [Pg.285]    [Pg.245]    [Pg.274]    [Pg.231]    [Pg.330]    [Pg.113]    [Pg.209]    [Pg.607]    [Pg.236]    [Pg.123]    [Pg.250]    [Pg.349]    [Pg.108]    [Pg.162]    [Pg.103]    [Pg.296]    [Pg.397]    [Pg.488]    [Pg.478]    [Pg.76]    [Pg.362]    [Pg.3]    [Pg.406]    [Pg.134]    [Pg.406]    [Pg.207]    [Pg.182]    [Pg.422]   
See also in sourсe #XX -- [ Pg.274 , Pg.275 , Pg.276 , Pg.277 , Pg.278 , Pg.279 ]

See also in sourсe #XX -- [ Pg.274 , Pg.275 , Pg.276 , Pg.277 , Pg.278 , Pg.279 ]




SEARCH



Heterocyclic enols

© 2024 chempedia.info