Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolates Michael reaction

Summary This is an example of a conjugate addition of an enolate (Michael reaction), followed by an intramolecular... [Pg.111]

So far in this section we have combined enolate anions with other carbonyl compounds by direct attack at the carbonyl group. We can expand the scope of this reaction by using a,p-unsaturated carbonyl compounds as the electrophiles. This is the Michael reaction. Remind yourself of tliis by writing out the mechanism of a Michael reaction such as ... [Pg.35]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

If a Michael reaction uses an unsymmetrical ketone with two CH-groups of similar acidity, the enol or enolate is first prepared in pure form (p. llff.). To avoid equilibration one has to work at low temperatures. The reaction may then become slow, and it is advisable to further activate the carbon-carbon double bond. This may be achieved by the introduction of an extra electron-withdrawing silyl substituent at C-2 of an a -synthon. Treatment of the Michael adduct with base removes the silicon, and may lead as well to an aldol addition (G. Stork, 1973, 1974 B R.K. Boeckman, Jr., 1974). [Pg.73]

A synthetically useful reaction known as the Michael reaction, or Michael addition, involves nucleophilic addition of carbanions to a p unsaturated ketones The most common types of carbanions used are enolate 10ns derived from p diketones These enolates are weak bases (Section 18 6) and react with a p unsaturated ketones by conjugate addition... [Pg.779]

Stabilized anions exhibit a pronounced tendency to undergo conjugate addition to a p unsaturated carbonyl compounds This reaction called the Michael reaction has been described for anions derived from p diketones m Section 18 13 The enolates of ethyl acetoacetate and diethyl malonate also undergo Michael addition to the p carbon atom of a p unsaturated aldehydes ketones and esters For example... [Pg.901]

The 1,4-addition of an enolate anion 1 to an o ,/3-unsaturated carbonyl compound 2, to yield a 1,5-dicarbonyl compound 3, is a powerful method for the formation of carbon-carbon bonds, and is called the Michael reaction or Michael addition The 1,4-addition to an o ,/3-unsaturated carbonyl substrate is also called a conjugate addition. Various other 1,4-additions are known, and sometimes referred to as Michael-like additions. [Pg.201]

The overall process is the addition of a CH-acidic compound to the carbon-carbon double bond of an o ,/3-unsaturated carbonyl compound. The Michael reaction is of particular importance in organic synthesis for the construction of the carbon skeleton. The above CH-acidic compounds usually do not add to ordinary carbon-carbon double bonds. Another and even more versatile method for carbon-carbon bond formation that employs enolates as reactive species is the aldol reaction. [Pg.202]

Exactly the same kind of conjugate addition can occur when a nucleophilic enolate ion reacts with an ,j6-unsaturated carbonyl compound—a process known as the Michael reaction. [Pg.894]

The best Michael reactions are those that take place when a particularly stable enolate ion such as that derived from a /i-keto ester or other 1,3-dicarbonyl compound adds to an unhindered a,/3-unsaturated ketone. Tor example, ethyl acetoacetate reacts with 3-buten-2-one in the presence of sodium ethoxide to yield the conjugate addition product. [Pg.894]

Michael reactions take place by addition of a nucleophilic enolate ion donor to the /3 carbon of an a,(3-unsaturated carbonyl acceptor, according to the mechanism shown in Figure 23.7. [Pg.894]

The nucleophile adds to the e,/3-unsaturated ketone electrophile in a Michael reaction to generate a new enolate as product. [Pg.895]

A Michael reaction involves the conjugate addition of a stable enolate ion donor to an o,/3-unsaturated carbonyl acceptor, yielding a 1,5-dicarbonyl product. Usually, the stable enolate ion is derived from a /3-diketone, jS-keto ester, malonic ester, or similar compound. The C—C bond made in the conjugate addition step is the one between the a carbon of the acidic donor and the (3 carbon of the unsaturated acceptor. [Pg.896]

There are two advantages to the enaroine-Michael reaction versus the enolate-ion-Michael that make enamines so useful in biological pathways. First, an enamine is neutral, easily prepared, and easily handled, while an enolate ion is charged, sometimes difficult to prepare, and must be handled with care. [Pg.897]

The first step of the Robinson annulation is simply a Michael reaction. An enamine or an enolate ion from a jS-keto ester or /3-diketone effects a conjugate addition to an a-,/3-unsaturated ketone, yielding a 1,5-diketone. But as we saw in Section 23.6,1,5-diketones undergo intramolecular aldol condensation to yield cyclohexenones when treated with base. Thus, the final product contains a six-membered ring, and an annulation has been accomplished. An example occurs during the commercial synthesis of the steroid hormone estrone (figure 23.9). [Pg.899]

In this example, the /3-diketone 2-methyJ-l,3-cyclopentanedione is used to generate the enolate ion required for Michael reaction and an aryl-substituted a,/3-unsaturated ketone is used as the acceptor. Base-catalyzed Michael reaction between the two partners yields an intermediate triketone, which then cyclizes in an intramolecular aldol condensation to give a Robinson annulation product. Several further transformations are required to complete the synthesis of estrone. [Pg.899]

Michael reaction (Section 23.10) The conjugate addition reaction of an enolate ion to an unsalurated carbonyl compound. [Pg.1245]

Various diastereoselective Michael reactions are based on y-bromo-, y-alkyl-, or y-alkoxy-2(5//)-furanones following the trans-face selectivity shown in Section 1.5.2.3.1.2. Thus the lithium enolates of esters such as ethyl propanoate, ethyl a-methoxyacetate and ethyl a-phenylacetate add to methoxy-2(5/f)-furanone with complete face selectivity269-273 (see Section 1.5.2.4.4.2.). [Pg.990]

An intramolecular version of enolate Michael addition to enantiomerically pure vinylic sulfoxides is represented by reaction of a cyclopentenone sulfoxide with dichloroketene (Scheme 5)90 this type of additive Pummerer rearrangement has been developed by Marino and coworkers91 into a highly effective way of constructing variously substituted lactones in very high enantiomeric purity (equation 43). [Pg.843]

Thus the product in such cases can exist as two pairs of enantiomers. In a di-astereoselective process, one of the two pairs is formed exclusively or predominantly as a racemic mixture. Many such examples have been reported. In many of these cases, both the enolate and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters, (E) enolates gave the syn pair of enantiomers (p. 146), while (Z) enolates gave the anti pair. Addition of chiral additives to the reaction, such as proline derivatives, or (—)-sparteine lead to product formation with good-to-excellent asynunetric induction. Ultrasound has also been used to promote asymmetric Michael reactions. Intramolecular versions of Michael addition are well known. ... [Pg.1023]

The reactions with preformed enol derivatives provide a way to control the stereoselectivity of the aldol reaction. As with the Michael reaction (15-16), the aldol reaction creates two new chiral centers, and, in the most general case, there are four stereoisomers of the aldol product, which can be represented as... [Pg.1221]

This bifunctionnal amino-thiourea organocatalyst led to high selectivity because it was activating both the nitrone and the malonate, in its enol form, due to the acidic hydrogen atoms of the thiourea. Thus, the amino-thiourea catalyst promoted the Michael reaction of malonates to various nitroolefins... [Pg.261]

Route (b) offers a short cut since the reaction between (5) and PhCHO under dehydrating conditions needs no control as (3) is the only possible enone from a ketone enolate attacking the more reactive aldehyde (p T 167). The Michael reaction is also better by this route as explained on p T 171, This is the published synthesis. [Pg.234]

Scheldt and co-workers have also accessed enolate equivalents from enals to furnish cyclopentanes 236 asymmetrically. Formation of the enolate equivalent from enals 235 with the NHC, followed by an intramolecular Michael reaction and 0-acylation, gives the lactone products 236, which are readily opened by either alcohols or amines to generate functionalised cyclopentane derivatives 237 in excellent ee. [Pg.289]

On the other hand, the enantioselective 1,4-addition of carbanions such as enolates to linear enones is an interesting challenge, since relatively few efficient methods exist for these transformations. The Michael reaction of p-dicarbonyl compounds with a,p-unsaturated ketones can be catalysed by a number of transition-metal compounds. The asymmetric version of this reaction has been performed using chiral diol, diamine, and diphosphine ligands. In the past few years, bidentate and polydentate thioethers have begun to be considered as chiral ligands for this reaction. As an example, Christoffers et al. have developed the synthesis of several S/O-bidentate and S/O/S-tridentate thioether... [Pg.97]

Methyl 1-phenylthiovinyl ketones can also be used as enones in kinetically controlled Robinson annulation reactions, as illustrated by Entry 6. Entry 7 shows a annulation using silyl enol ether as the enolate equivalent. These reactions are called Mukaiyama-Michael reactions (see Section 2.6.3). [Pg.138]

Conditions for effecting conjugate addition of neutral enolate equivalents such as silyl enol ethers in the presence of Lewis acids have been developed and are called Mukaiyama-Michael reactions. Trimethylsilyl enol ethers can be caused to react with electrophilic alkenes by use of TiCl4. These reactions proceed rapidly even at -78° C.308... [Pg.190]

Initial stereochemical studies suggested that the Mukaiyama-Michael reaction proceeds through an open TS, since there was a tendency to favor anti diastereoselec-tivity, regardless of the silyl enol ether configuration.312... [Pg.191]

Anionic domino processes are the most often encountered domino reactions in the chemical literature. The well-known Robinson annulation, double Michael reaction, Pictet-Spengler cyclization, reductive amination, etc., all fall into this category. The primary step in this process is the attack of either an anion (e. g., a carban-ion, an enolate, or an alkoxide) or a pseudo anion as an uncharged nucleophile (e. g., an amine, or an alcohol) onto an electrophilic center. A bond formation takes place with the creation of a new real or pseudo-anionic functionality, which can undergo further transformations. The sequence can then be terminated either by the addition of a proton or by the elimination of an X group. [Pg.48]

Professor Seebach and coworkers (96) used silyl enolate (203) containing an additional C,C double bond in the Michael reaction with a-nitroalkene (204) in the presence of chiral LA (Scheme 3.146). [Pg.564]


See other pages where Enolates Michael reaction is mentioned: [Pg.365]    [Pg.365]    [Pg.203]    [Pg.466]    [Pg.973]    [Pg.1027]    [Pg.1222]    [Pg.140]    [Pg.93]    [Pg.434]    [Pg.255]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Enolates Michael

© 2024 chempedia.info