Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolate anions, malonate, reaction with ketones

Malonic esters can be converted to the enolate anion and condensed with aldehydes, ketones, or acid derivatives. The reaction of malonic acid with an aldehyde using pyridine as a base is called the Knoevenagel condensation. [Pg.1122]

The intra-molecular Claisen condensation is called a Dieckmann condensation, and it generates a cyclic compound 58,99,101,118. Malonic esters can be converted to the enolate anion and condensed with aldehydes, ketones, or add derivatives. The reaction of malonic acid with an aldehyde using pyridine as a base is called the Knoevenagel condensation 59, 60, 61, 62, 69, 99,108,110,112, 113,119,124. [Pg.1182]

In many of these cases, both the enolate anion and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters. The (E) enolates gave the syn pair of enantiomers (p. 166), while (Z) enolates gave the anti pair. Nitro compounds add to conjugated ketones in the presence of a dipeptide and a piperazine. ° Malonate derivatives also add to conjugated ketones, and keto esters add to conjugated esters.Addition of chiral additives to the reaction, such as metal-salen complexes,proline derivatives, or (—)-sparteine, ... [Pg.1108]

The step marked with an asterisk is reversible and, in fact, is an unfavorable equilibrium, because the product (a simple ketone enolate) is a less stable anion than is the doubly stabilized malonate anion. However, the next step, reaction with more malonic ester to make a new malonate anion, drives the equilibrium to product. The reaction is catalytic in base because malonate is regenerated in this last step. [Pg.446]

The reaction of diethyl malonate (90) with sodium hydride generates enolate anion 91 as the conjugate base, and hydrogen gas is the conjugate acid. It has the three resonance contributors shown in the illustration, although 91A has the highest concentration of electron density, and 91 will react as a carbanion nucleophile. There is one extra resonance form in the malonate enolate anion relative to a simple ester due to the second carbonyl unit, and it means that 91 is more stable than the enolate derived from a monoester. In part, this accounts for the enhanced acidity and easier formation of the enolate anion using a weaker base. Once formed, 91 is a carbon nucleophile and it will react with both aldehydes and ketones, as well as with other esters. [Pg.1152]

Aqueous acid workup of 92 gives the alcohol, 93. With malonic ester derivatives, loss of water to form 94 occurs very easily, with dilute acid or with gentle heating because the C=C unit is conjugated to two carbonyl groups, facilitating dehydration. Although it is possible to isolate 83, it is more usually difficult. The enolate anion of malonate esters also reacts with ketones and may be condensed with other esters in acyl substitution reactions. When 90 is treated with NaOEt in ethanol and then with ethyl butanoate, the final product after mild hydrolysis is a keto-diester, 95. [Pg.1153]

A variation of the malonic ester synthetic uses a P-keto ester such as 116. In Section 22.7.1, the Claisen condensation generated P-keto esters via acyl substitution that employed ester enolate anions. When 116 is converted to the enolate anion with NaOEt in ethanol, reaction with benzyl bromide gives the alkylation product 117. When 117 is saponified, the product is P-keto acid 118, and decarboxylation via heating leads to 4-phenyl-2-butanone, 119. This reaction sequence converts a P-keto ester, available from the ester precursors, to a substituted ketone in what is known as the acetoacetic acid synthesis. Both the malonic ester synthesis and the acetoacetic acid synthesis employ enolate alkylation reactions to build larger molecules from smaller ones, and they are quite useful in synthesis. [Pg.1157]

A p-keto ester can be hydrolyzed to a P-keto acid, and heating leads to decarboxylation. Malonic acid derivatives, as well as P-ketone acids decarboxylate upon heating 63,109, 111, 135. Enolate anions react with alkyl halides by an S]v2 reaction to give alkylated carbonyl compounds 65, 67, 70, 84, 108, 116, 127,... [Pg.1182]

The carbonyls Fe(CO)5 and [CpFe(CO)2]+ (2) form stable cationic complexes with alkenes, which are used for both protection and activation of alkenes [1]. [CpFe(CO)2]+ (2 abbreviated as Fp+) is prepared by the reaction of cyclopentadienyl anion (1) with Fe(CO)5, followed by oxidative cleavage with bromine, and used for the protection of alkenes. The electron density of the double bond is decreased by the coordination of [CpFe(CO)2]+ and hence this bond is activated to nucleophilic attacks. Introduction of nucleophiles, such as the carbon nucleophile of malonate, to cyclopentene becomes possible via the formation of the complex 3, and the stable tftmv-er-alkyliron complex 4 of cyclopentane is prepared. The vinyl ether complex 6 is obtained easily from the a-bromoacetal 5, and reacts with an enolate of ketone 7 as an... [Pg.355]

If we consider the synthesis of 20.18, we first note that it is a 1,5-dicarbonyl compound—the disconnection that we need is suggested by the ring—as in many other examples, we disconnect the bond exocyclic to the ring. The synthon for "[CH2COOH] is the anion of diethyl malonate, and the forward reaction is shown in Figure 20.34. Some other synthetic examples are shown in Figure 20.35. In the first example, only one component is able to enolize, and the enolate is stabilized by the phenyl ring. However, the aldehyde is more electrophilic than the ketone. The second example is a reminder that any a,p-unsaturated carbonyl compound will react in this way with any stabilized enolate-type anion. The final example was used in a synthesis of cholesterol it proceeds via the most stable enolate. [Pg.965]


See other pages where Enolate anions, malonate, reaction with ketones is mentioned: [Pg.16]    [Pg.382]    [Pg.1099]    [Pg.899]    [Pg.899]    [Pg.27]    [Pg.899]    [Pg.4]    [Pg.2]    [Pg.74]    [Pg.77]    [Pg.44]    [Pg.57]    [Pg.347]   
See also in sourсe #XX -- [ Pg.117 , Pg.124 ]




SEARCH



Enol ketones

Enolate anions

Enolate anions reactions

Enolates anion

Enolates anionic

Enols ketonization

Enols reactions with

Ketone enolate

Ketone enolates

Ketones enolization

Ketones, enol, reaction with

Ketones, enolate anions

Ketones, reaction with enolate anions

Ketones, reaction with malonate enolates

Ketonization-enolization

Malonate anions

Malonate enolates

Malonate, enolates, reaction with

Reaction with enolate anions

Reaction with ketone

Reaction with malonate anion

Reaction with malonates

Reactions with anions

Reactions, with enolates

© 2024 chempedia.info