Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolate anions, esters, reactions

In the presence of a strong base, the ot carbon of a carboxylic ester can condense with the carbonyl carbon of an aldehyde or ketone to give a P-hydroxy ester, which may or may not be dehydrated to the a,P-unsaturated ester. This reaction is sometimes called the Claisen reaction,an unfortunate usage since that name is more firmly connected to 10-118. In a modem example of how the reaction is used, addition of tert-butyl acetate to LDA in hexane at -78°C gives the lithium salt of ferf-butyl acetate, " (12-21) an enolate anion. Subsequent reaction a ketone provides a simple rapid alternative to the Reformatsky reaction (16-31) as a means of preparing P-hydroxy erf-butyl esters. It is also possible for the a carbon of an aldehyde or ketone to add to the carbonyl carbon of a carboxylic ester, but this is a different reaction (10-119) involving nucleophilic substitution and not addition to a C=0 bond. It can, however, be a side reaction if the aldehyde or ketone has an a hydrogen. [Pg.1224]

When carboxylic esters containing an a hydrogen are treated with a strong base, such as sodium ethoxide, a condensation occurs to give a p-keto ester via an ester enolate anion. ° This reaction is called the Claisen condensation. When it is carried out with a mixture of two different esters, each of which possesses an a hydrogen (this reaction is called a mixed Claisen or a crossed Claisen condensation), a mixture of all four products is generally obtained and the reaction is seldom useful synthetically. However, if only one of the esters has an... [Pg.1452]

Further persuasive evidence in support of the expectation that the mechanism of the ECH-catalyzed reaction involves an Elcb mechanism with a stabilized thioester enolate anion intermediate is obtained from the membership of ECH in the mechanistically diverse enoyl-CoA hydratase superfamily [70]. Such superfamilies are derived from a common ancestor by divergent evolution the members of these share a partial reaction, usually formation of a common intermediate, e.g., an enolate anion. The reactions catalyzed by members of the enoyl-CoA hydratase superfamily (almost) always utilize acyl esters of CoA as substrates the reactions invariably can be rationalized with mechanisms that involve the formation of a thioester enolate anion intermediate, e.g., 1,3-proton transfer, 1,5-proton transfer, Dieckman and reverse Dieckman condensations, and yS-decarboxylation. Although mechanisms with thioester enolate anion intermediates are plausible for each of these reactions, as in the ECH-catalyzed reaction, evidence for their existence on the reaction coordinate is circumstantial because the intermediates do not accumulate, thereby avoiding spectroscopic detection. [Pg.1130]

Selenides eliminate readily without a base. They are generally prepared from enolate anions by reaction with diphenyldiselenide or phenylselenyl bromide to give phenylselenides. The phenylselenides are oxidized with sodium periodate, hydrogen peroxide, or peracids to the selenoxides, which eliminate even at room temperature to afford the a,p-unsamrated ketones and esters [107]. [Pg.189]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

Reaction of Enolate Anions. In the presence of certain bases, eg, sodium alkoxide, an ester having a hydrogen on the a-carbon atom undergoes a wide variety of characteristic enolate reactions. Mechanistically, the base removes a proton from the a-carbon, giving an enolate that then can react with an electrophile. Depending on the final product, the base may be consumed stoichiometricaHy or may function as a catalyst. Eor example, the sodium alkoxide used in the Claisen condensation is a catalyst ... [Pg.389]

The alkylation reactions of enolate anions of both ketones and esters have been extensively utilized in synthesis. Both very stable enolates, such as those derived from (i-ketoesters, / -diketones, and malonate esters, as well as less stable enolates of monofunctional ketones, esters, nitriles, etc., are reactive. Many aspects of the relationships between reactivity, stereochemistry, and mechanism have been clarified. A starting point for the discussion of these reactions is the structure of the enolates. Because of the delocalized nature of enolates, an electrophile can attack either at oxygen or at carbon. [Pg.435]

Thus the reactions of cyclic or acyclic enamines with acrylic esters or acrylonitrile can be directed to the exclusive formation of monoalkylated ketones (3,294-301). The corresponding enolate anion alkylations lead preferentially to di- or higher-alkylation products. However, by proper choice of reaction conditions, enamines can also be used for the preferential formation of higher alkylation products, if these are desired. Such reactions are valuable in the a substitution of aldehydes, which undergo self-condensation in base-catalyzed reactions (117,118). Monoalkylation products are favored in nonhydroxylic solvents such as benzene or dioxane, whereas dialkylation products can be obtained in hydroxylic solvents such as methanol. The difference in products can be ascribed to the differing fates of an initially formed zwitterionic intermediate. Collapse to a cyclobutane takes place in a nonprotonic solvent, whereas protonation on the newly introduced substitutent and deprotonation of the imonium salt, in alcohol, leads to a new enamine available for further substitution. [Pg.359]

The reactive species is the corresponding enolate-anion 4 of malonic ester 1. The anion can be obtained by deprotonation with a base it is stabilized by resonance. The alkylation step with an alkyl halide 2 proceeds by a Sn2 reaction ... [Pg.190]

Many types of carbonyl compounds, including aldehydes, ketones, esters, thioesters, acids, and amides, can be converted into enolate ions by reaction with LDA. Table 22.1 lists the approximate pKa values of different types of carbonyl compounds and shows how these values compare to other acidic substances we ve seen. Note that nitriles, too, are acidic and can be converted into enolate-like anions. [Pg.851]

Besides ordinary esters (containing an a hydrogen), the reaction can also be carried out with lactones and, as in 16-38, with the y position of a,p-unsaturated esters (vinylogy). There are also cases, where the enolate anion of an amide was condensed with an aldehyde. ... [Pg.1224]

Active methylene compounds may be sulfinylated by reaction of their enolate anions with sulfinate ester . This reaction has been investigated much in recent years and the compounds resulting from it have been of considerable use in asymmetric synthesis (see the chapter by Posner). Examples of the sulfinylation are given in the following paragraphs. [Pg.67]

SRNl substitution include ketone enolates,183 ester enolates,184 amide enolates,185 2,4-pentanedione dianion,186 pentadienyl and indenyl carbanions,187 phenolates,188 diethyl phosphite anion,189 phosphides,190 and thiolates.191 The reactions are frequently initiated by light, which promotes the initiating electron transfer. As for other radical chain processes, the reaction is sensitive to substances that can intercept the propagation intermediates. [Pg.1055]

Parts A and B of the procedure correspond to preparation of lithium tetramethylpiperidide, and its use in the in situ preparation and addition of dibromomethyllithium to the ester 1 producing tetrahedral intermediate 2. In Part C a mixture of lithium hexamethyldisilazide and lithium ethoxide is prepared for addition in Part D to the solution of 2. The silazide base serves to deprotonate the mono and dibromo ketones that are formed on initial warming of the reaction to -20°C, thus protecting them as the enolate anions 4 and 3. Addition of the sec-butyllithium in Part... [Pg.78]

The preferential -configuration of the enol esters, derived from p-dicarbonyl compounds under phase-transfer conditions, contrasts with the formation of the Z-enol esters when the reaction is carried out by classical procedures using alkali metal alkoxides. In the latter case, the U form of the intermediate enolate anion is stabilized by chelation with the alkali metal cation, thereby promoting the exclusive formation of the Z-enol ester (9) (Scheme 3.5), whereas the formation of the ion-pair with the quaternary ammonium cation allows the carbanion to adopt the thermodynamically more stable sickle or W forms, (7) and (8), which lead to the E-enol esters (10) [54],... [Pg.96]


See other pages where Enolate anions, esters, reactions is mentioned: [Pg.6]    [Pg.164]    [Pg.261]    [Pg.320]    [Pg.73]    [Pg.236]    [Pg.237]    [Pg.73]    [Pg.55]    [Pg.320]    [Pg.320]    [Pg.110]    [Pg.187]    [Pg.340]    [Pg.115]    [Pg.150]    [Pg.50]    [Pg.29]   
See also in sourсe #XX -- [ Pg.125 , Pg.126 , Pg.127 , Pg.163 , Pg.164 , Pg.165 ]




SEARCH



Enol esters

Enol esters reaction

Enolate anions

Enolate anions reaction with esters

Enolate anions reactions

Enolate anions, amino-esters, reaction with

Enolate anions, chloro-esters, reaction with

Enolate anions, cyano esters, reaction with

Enolate anions, ester

Enolate anions, ester condensation reactions

Enolate anions, ester reaction with acid chlorides

Enolate anions, esters, reaction with aldehydes

Enolate anions, esters, reaction with alkyl halides

Enolate anions, esters, reaction with imines

Enolate anions, esters, reaction with nitriles

Enolate anions, reaction with allylic esters

Enolates anion

Enolates anionic

Enolates enol esters

Ester enolate

Esters enolates

Esters enolization

Esters reaction with ketone enolate anions

© 2024 chempedia.info