Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol esters halogenation

Halogenation of enol ethers and enol esters, leading directly to a-halo ketones is realized by use of molecular halogen or halide salts and metal oxidants. Pyridinium chlorochromate (PCC)/l2, Cr03/TMS-Cl/l2, AgOAcfi2, T10Ac/l2. ° Pb(OAc)4 and metal halides and Cu(OAc)2/l2 are useful classes of reagents for this conversion, and some examples are listed in Table 1. [Pg.530]

Reactions between haloketones and phosphonite esters, R P(OR)2, produce enol esters of phosphonic acids or esters of the phosphinic acids, R (R C0CH2)P(0)0R, depending on the halogen involved whilst phosphinite esters, R2POR yield the phosphinic acid esters R2P(0)0CPh=CHBr when treated with a,a-dibromoacetophenone . ... [Pg.247]

Nucleophilic Attack at Halogen. Further studies have been reported of the reactions of diols with the triphenylphosphine-carbon tetrachloride reagent. It has now been applied to 1,2-diols (in the presence of potassium carbonate) to form epoxides and to the trans-6 o (84), the nature of the product depending on the relative amounts of phosphine and diol present. The major product of reactions involving equimolar quantities of phosphine and diol is (85). The cyclodehydration product (86) is formed in only poor yield. In the presence of carboxylic acids, the triphenylphosphine-carbon tetrachloride system causes ring-opening of epoxides with the formation of c -enol esters, the reaction presumably proceeding via nucleophilic attack by the oxirane at an acyloxyphos-phonium intermediate. ... [Pg.14]

In this chapter, we have seen that enolates can attack a wide variety of electrophiles. We started the chapter with the reaction between enolates and halogens. Then we looked at the reaction between enolates and alkyl hahdes. We also saw that enolates can attack ketones or esters. In this section, we will conclude our discussion of enolates by looking at a special kind of electrophile that can be attacked by an enolate. Consider the following compound ... [Pg.273]

Generally, isolated olefinic bonds will not escape attack by these reagents. However, in certain cases where the rate of hydroxyl oxidation is relatively fast, as with allylic alcohols, an isolated double bond will survive. Thepresence of other nucleophilic centers in the molecule, such as primary and secondary amines, sulfides, enol ethers and activated aromatic systems, will generate undesirable side reactions, but aldehydes, esters, ethers, ketals and acetals are generally stable under neutral or basic conditions. Halogenation of the product ketone can become but is not always a problem when base is not included in the reaction mixture. The generated acid can promote formation of an enol which in turn may compete favorably with the alcohol for the oxidant. [Pg.233]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

A thioamide of isonicotinic acid has also shown tuberculostatic activity in the clinic. The additional substitution on the pyridine ring precludes its preparation from simple starting materials. Reaction of ethyl methyl ketone with ethyl oxalate leads to the ester-diketone, 12 (shown as its enol). Condensation of this with cyanoacetamide gives the substituted pyridone, 13, which contains both the ethyl and carboxyl groups in the desired position. The nitrile group is then excised by means of decarboxylative hydrolysis. Treatment of the pyridone (14) with phosphorus oxychloride converts that compound (after exposure to ethanol to take the acid chloride to the ester) to the chloro-pyridine, 15. The halogen is then removed by catalytic reduction (16). The ester at the 4 position is converted to the desired functionality by successive conversion to the amide (17), dehydration to the nitrile (18), and finally addition of hydrogen sulfide. There is thus obtained ethionamide (19)... [Pg.255]

Darzens reactions between the chiral imine 52 and a-halo enolates 53 for the preparation of nonracemic aziridine-2-carboxylic esters 54 (Scheme 3.17) were studied by Fujisawa and co-workers [61], It is interesting to note that the lithium enolate afforded (2K,3S)-aziridirie (2i ,3S)-54 as the sole product, whereas the zinc enolate give rise to the isomer (2S,3i )-54. The a-halogen did not seem to affect the stereoselectivity. [Pg.80]

A number of other methods exist for the a halogenation of carboxylic acids or their derivatives. Acyl halides can be a brominated or chlorinated by use of NBS or NCS and HBr or HCl. The latter is an ionic, not a free-radical halogenation (see 14-2). Direct iodination of carboxylic acids has been achieved with I2—Cu acetate in HOAc. " ° Acyl chlorides can be a iodinated with I2 and a trace of HI. Carboxylic esters can be a halogenated by conversion to their enolate ions with lithium A-isopropylcyclohexylamide in THF and treatment of this solution at -78°C with... [Pg.778]

In the late 1960s, methods were developed for the synthesis of alkylated ketones, esters, and amides via the reaction of trialkyl-boranes with a-diazocarbonyl compounds (50,51), halogen-substituted enolates (52), and sulfur ylids (53) (eqs. [33]-[35]). Only one study has addressed the stereochemical aspects of these reactions in detail. Masamune (54) reported that diazoketones 56 (Ri = CH3, CH2Ph, Ph), upon reaction with tributylborane, afford almost exclusively the ( )-enolate, in qualitative agreement with an earlier report by Pasto (55). It was also found that E) - (Z)-enolate isomerization could be accomplished with a catalytic amount of lithium phenoxide (CgHg, 16 hr, 22°C) (54). [Pg.39]


See other pages where Enol esters halogenation is mentioned: [Pg.42]    [Pg.25]    [Pg.201]    [Pg.499]    [Pg.82]    [Pg.159]    [Pg.77]    [Pg.190]    [Pg.775]    [Pg.813]    [Pg.33]    [Pg.191]    [Pg.340]    [Pg.199]    [Pg.46]    [Pg.656]    [Pg.843]    [Pg.209]    [Pg.697]    [Pg.24]    [Pg.235]    [Pg.263]   
See also in sourсe #XX -- [ Pg.589 ]

See also in sourсe #XX -- [ Pg.530 ]

See also in sourсe #XX -- [ Pg.530 ]

See also in sourсe #XX -- [ Pg.7 , Pg.530 ]

See also in sourсe #XX -- [ Pg.7 , Pg.530 ]

See also in sourсe #XX -- [ Pg.530 ]




SEARCH



Enol esters

Enol esters, acylation halogenation

Enol halogenation

Enolates enol esters

Ester enolate

Esters enolates

Esters enolization

Esters halogenated

Esters halogenation

Halogens esters

© 2024 chempedia.info