Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy level diagram Jablonski

Fig U re 12.4 Energy level (Jablonski) diagram of typical semiquinonoid steroid donor... [Pg.442]

Jablonski (48-49) developed a theory in 1935 in which he presented the now standard Jablonski diagram" of singlet and triplet state energy levels that is used to explain excitation and emission processes in luminescence. He also related the fluorescence lifetimes of the perpendicular and parallel polarization components of emission to the fluorophore emission lifetime and rate of rotation. In the same year, Szymanowski (50) measured apparent lifetimes for the perpendicular and parallel polarization components of fluorescein in viscous solutions with a phase fluorometer. It was shown later by Spencer and Weber (51) that phase shift methods do not give correct values for polarized lifetimes because the theory does not include the dependence on modulation frequency. [Pg.9]

Figure 10. Electron excitations in radicals (a) Collective representation of one-electron transitions of the A, B, and C types if denotes MO (b) LCI energy-level scheme (Jablonski diagram) for doublet and quartet states indicating why with radicals fluorescence (- - -) but not phosphorescence is observed. Spin-forbidden transitions are represented by dashed lines. Figure 10. Electron excitations in radicals (a) Collective representation of one-electron transitions of the A, B, and C types if denotes MO (b) LCI energy-level scheme (Jablonski diagram) for doublet and quartet states indicating why with radicals fluorescence (- - -) but not phosphorescence is observed. Spin-forbidden transitions are represented by dashed lines.
Fig. 1 Jablonski diagram of energy level for describing processes absorption, fluorescence and phosphorescence in complex molecules where kf and /c arc the radiative and nonradiative rates of fluorescence, respectively, kj and kTnr are the radiative and nonradiative rates of phosphorescence, respectively, k-lsc is the interconversion rate, and kmt is the rate of intermolecular processes Av denotes the Stokes shift of fluorescence... Fig. 1 Jablonski diagram of energy level for describing processes absorption, fluorescence and phosphorescence in complex molecules where kf and /c arc the radiative and nonradiative rates of fluorescence, respectively, kj and kTnr are the radiative and nonradiative rates of phosphorescence, respectively, k-lsc is the interconversion rate, and kmt is the rate of intermolecular processes Av denotes the Stokes shift of fluorescence...
Just as above, we can derive expressions for any fluorescence lifetime for any number of pathways. In this chapter we limit our discussion to cases where the excited molecules have relaxed to their lowest excited-state vibrational level by internal conversion (ic) before pursuing any other de-excitation pathway (see the Perrin-Jablonski diagram in Fig. 1.4). This means we do not consider coherent effects whereby the molecule decays, or transfers energy, from a higher excited state, or from a non-Boltzmann distribution of vibrational levels, before coming to steady-state equilibrium in its ground electronic state (see Section 1.2.2). Internal conversion only takes a few picoseconds, or less [82-84, 106]. In the case of incoherent decay, the method of excitation does not play a role in the decay by any of the pathways from the excited state the excitation scheme is only peculiar to the method we choose to measure the fluorescence (Sections 1.7-1.11). [Pg.46]

Fluorescence is a process that occurs after excitation of a molecule with light. It involves transitions of the outermost electrons between different electronic states of the molecule, resulting in emission of a photon of lower energy than the previously absorbed photon. This is represented in the Jablonski diagram (see Fig. 6.1). As every molecule has different energy levels, the fluorescent properties vary from one fluorophore to the other. The main characteristics of a fluorescent dye are absorption and emission wavelengths, extinction... [Pg.238]

Fig. 6.1. Jablonski diagram, representing electron energy levels of fluorophores and transitions after photon excitation. S = electronic state, different lines within each state represent different vibrational levels. Blue arrows represent absorption events, green arrows depict internal conversion or heat dissipation, and orange arrows indicate fluorescence emission. Intersystem crossing into triplet states has been omitted for simplicity (see also Chaps. 1 and 12). Fig. 6.1. Jablonski diagram, representing electron energy levels of fluorophores and transitions after photon excitation. S = electronic state, different lines within each state represent different vibrational levels. Blue arrows represent absorption events, green arrows depict internal conversion or heat dissipation, and orange arrows indicate fluorescence emission. Intersystem crossing into triplet states has been omitted for simplicity (see also Chaps. 1 and 12).
Fig. 2 Jablonski energy level diagram illustrating possible transitions, where solid lines represent absorption processes and dotted lines represent scattering processes. Key A, IR absorption B, near-IR absorption of an overtone C, Rayleigh scattering D, Stokes Raman transition and E, anti-Stokes Raman transition. S0 is the singlet ground state, S, the lowest singlet excited state, and v represents vibrational energy levels within each electronic state. Fig. 2 Jablonski energy level diagram illustrating possible transitions, where solid lines represent absorption processes and dotted lines represent scattering processes. Key A, IR absorption B, near-IR absorption of an overtone C, Rayleigh scattering D, Stokes Raman transition and E, anti-Stokes Raman transition. S0 is the singlet ground state, S, the lowest singlet excited state, and v represents vibrational energy levels within each electronic state.
In 1935, after studying the luminescence of various colorants, Jablonski suggested the electronic energy diagram of the singlet and triplet states to explain the luminescence processes of excitation and emission. The proposed diagram of molecular electronic energy levels formed the basis of the theoretical interpretation of all luminescent phenomena [21],... [Pg.8]

Figure 1 Jablonski diagram showing energy levels and transitions F, fluorescence C, chemiluminescence P, phosphorescence CD, collisional deactivation IC, internal conversion ISC, intersystem crossing S0, ground singlet state S1( S2, excited singlet states Tl5 excited triplet state. Figure 1 Jablonski diagram showing energy levels and transitions F, fluorescence C, chemiluminescence P, phosphorescence CD, collisional deactivation IC, internal conversion ISC, intersystem crossing S0, ground singlet state S1( S2, excited singlet states Tl5 excited triplet state.
Figure 1.2. Jablonski energy level diagram showing the singlet state and the triplet state with its zero-field splittings for a planar aromatic chromophore. Figure 1.2. Jablonski energy level diagram showing the singlet state and the triplet state with its zero-field splittings for a planar aromatic chromophore.
Figure 13.2 Jablonski diagram. Energy levels of excited states of a polyatomic molecule. Figure 13.2 Jablonski diagram. Energy levels of excited states of a polyatomic molecule.
Figure 13 Jablonski diagram showing the energy levels in the ground and excited states and their interconversions involving radiative (solid, down arrows) and nonradiative (dotted arrows) transitions. Photochemical reactions might occur from either the singlet or the triplet manifold. Figure 13 Jablonski diagram showing the energy levels in the ground and excited states and their interconversions involving radiative (solid, down arrows) and nonradiative (dotted arrows) transitions. Photochemical reactions might occur from either the singlet or the triplet manifold.
FIGURE 6.30 Jablonski diagram showing the zero-point energies, E00, of the electronic levels relevant to the 351 nm photolysis of (anthraquinone-2-carboxylate)Re(CO)3(2,2 -bpy). The inset shows the displacement between potential curves, calculated under the harmonic approximation, for the ground state (bottom curve, —), the MLCTbipy Re (top curve, —), and MLCTaq.2-COj Re (—) ... [Pg.262]

FIGURE 1. Jablonski diagram for the relative positions of the electronic energy levels of a molecule, where F = fluorescence rate, P = phosphorescence rate and VR = vihrational relaxation... [Pg.137]


See other pages where Energy level diagram Jablonski is mentioned: [Pg.64]    [Pg.63]    [Pg.73]    [Pg.86]    [Pg.63]    [Pg.64]    [Pg.63]    [Pg.73]    [Pg.86]    [Pg.63]    [Pg.400]    [Pg.313]    [Pg.147]    [Pg.9]    [Pg.112]    [Pg.190]    [Pg.47]    [Pg.62]    [Pg.38]    [Pg.216]    [Pg.50]    [Pg.210]    [Pg.238]    [Pg.41]    [Pg.128]    [Pg.25]    [Pg.210]    [Pg.687]    [Pg.688]    [Pg.69]    [Pg.214]    [Pg.11]    [Pg.298]    [Pg.24]    [Pg.285]    [Pg.7]    [Pg.514]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Energy diagrams

Energy level diagram

Energy levels, electronic/vibrational, Jablonski diagram

Jablonski

Jablonski diagram

Jablonski energy diagram

© 2024 chempedia.info