Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction enantioselectivity

Neural networks were trained on the basis of these codes to predict chiralit> -dependent properties in enantioselective reactions [42] and in chiral chromatography [43]. A detailed description of the chirality codes is given in the Tutorial in Section 8,6,... [Pg.420]

The target molecule above contains a chiral center. An enantioselective synthesis can therefore be developed We use this opportunity to summarize our knowledge of enantioselective reactions. They are either alkylations of carbanions or addition reactions to C = C or C = 0 double bonds ... [Pg.200]

Table 17. Some enantioselective reactions to produce chiral monofunctional products. Table 17. Some enantioselective reactions to produce chiral monofunctional products.
This target molecule again contains a chiral center and we inspect Table 18 for help. Table 18. Some enantioselective reactions that produce difunctional products... [Pg.203]

Another important example of an enantioselective reaction mediated by a chiral catalyst is the hydrogenation of 3-substituted 2-acetamidoacrylic acid derivatives. [Pg.108]

The main strategy for catalytic enantioselective cycloaddition reactions of carbonyl compounds is the use of a chiral Lewis acid catalyst. This approach is probably the most efficient and economic way to effect an enantioselective reaction, because it allows the direct formation of chiral compounds from achiral substrates under mild conditions and requires a sub-stoichiometric amount of chiral material. [Pg.151]

Because ketones are generally less reactive than aldehydes, cycloaddition reaction of ketones should be expected to be more difficult to achieve. This is well reflected in the few reported catalytic enantioselective cycloaddition reactions of ketones compared with the many successful examples on the enantioselective reaction of aldehydes. Before our investigations of catalytic enantioselective cycloaddition reactions of activated ketones [43] there was probably only one example reported of such a reaction by Jankowski et al. using the menthoxyaluminum catalyst 34 and the chiral lanthanide catalyst 16, where the highest enantiomeric excess of the cycloaddition product 33 was 15% for the reaction of ketomalonate 32 with 1-methoxy-l,3-butadiene 5e catalyzed by 34, as outlined in Scheme 4.26 [16]. [Pg.174]

A chiral titanium(IV) complex has also been used by Wada et al. for the intermole-cular cycloaddition of ( )-2-oxo-l-phenylsulfonyl-3-alkenes 45 with enol ethers 46 using the TADDOL-TiX2 (X=C1, Br) complexes 48 as catalysts in an enantioselective reaction giving the dihydropyrans 47 as shown in Scheme 4.32 [47]. The reaction depends on the anion of the catalyst and the best yield and enantioselectivity were found for the TADDOL-TiBr2 up to 97% ee of the dihydropyrans 47 was obtained. [Pg.178]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

With the use of chiral reagents a differentiation of enantiotopic faces is possible, leading to an enantioselective reaction. The stereoselective version of the Michael addition reaction can be a useful tool in organic synthesis, for instance in the synthesis of natural products. [Pg.203]

The asymmetric epoxidation of an allylic alcohol 1 to yield a 2,3-epoxy alcohol 2 with high enantiomeric excess, has been developed by Sharpless and Katsuki. This enantioselective reaction is carried out in the presence of tetraisopropoxyti-tanium and an enantiomerically pure dialkyl tartrate—e.g. (-1-)- or (-)-diethyl tartrate (DET)—using tcrt-butyl hydroperoxide as the oxidizing agent. [Pg.254]

A substance made from the tartaric acid found at the bottom of this wine vat catalyzes enantioselective reactions. [Pg.735]

Claisen rearrangements with 74 -, Diels-Alder reactions with 74 -, enantioselective reactions 74... [Pg.791]

Jorgensen has recently reported similar enantioselective reactions between N-tosylimines 107 and trimethylsilyldiazomethane (TMSD) catalyzed by chiral Lewis acid complexes (Scheme 1.32) [57, 53]. The cis-aziridine could be obtained in 72% ee with use of a BINAP-copper(i) catalyst, but when a bisoxazoline-copper(i) complex was used the corresponding trans isomer was fonned in 69% ee but with very poor diastereoselectivity. [Pg.27]

Z)-l-Methyl-2-butenylboronate 7 undergoes an exceptionally enantioselective reaction with benzaldehyde (99% ee), propanal (79%. 98% ee), 2-methyl-2-propenal (85%, 99% ee), and ( )-2-methyl-2-pentenal (81 %, 99% ee)10 38. Excellent enantioselectivity is also realized in reactions of the analogous chiral a-methyl-) y-disubstituted allylboronate27 40. Whether the l,2-dicyclohexyl-l,2-ethanediol auxiliary plays a beneficial role in this reaction, as suggested above for the asymmetric allylboration reactions of 6, has not yet been determined. [Pg.329]

Chiral oxazolidines 6, or mixtures with their corresponding imines 7, are obtained in quantitative yield from acid-catalyzed condensation of methyl ketones and ( + )- or ( )-2-amino-l-phcnylpropanol (norephedrine, 5) with azeotropic removal of water. Metalation of these chiral oxazolidines (or their imine mixtures) using lithium diisopropylamide generates lithioazaeno-lates which, upon treatment with tin(II) chloride, are converted to cyclic tin(II) azaenolates. After enantioselective reaction with a variety of aldehydes at 0°C and hydrolysis, ft-hydroxy ketones 8 are obtained in 58-86% op4. [Pg.600]

Kobayashi S. Catalytic enantioselective reactions of aldimines nsing chiral Lewis acids in Curr. Trends Org. Synth., [Proc. Int. Conf. ], 12th. 1999 183-190, Eds. Scolastico C., Nicotra F., Pb. Acad. Plenum Pub. N.Y. [Pg.304]

Figure 1.1 Energy diagram for an enzyme-catalyzed enantioselective reaction. E = enzyme A and B = enantiomeric substrates P and Q = enantiomeric products [EA] and [EB] = enzyme-substrate complexes AAC = difference in free energy denotes a transition state. Figure 1.1 Energy diagram for an enzyme-catalyzed enantioselective reaction. E = enzyme A and B = enantiomeric substrates P and Q = enantiomeric products [EA] and [EB] = enzyme-substrate complexes AAC = difference in free energy denotes a transition state.
A reaction in which an inactive substrate is converted selectively to one of two enantiomers is called an enantioselective reaction, and the process is called asymmetric induction. These terms apply to reactions in this category and in categories 3 and 4. [Pg.150]

On the basis of the conclusions accumulated over the years, novel highly efficient P-chirogenic phosphines were designed, synthesized, and tested in a variety of enantioselective reactions. These issues will be stressed in the following paragraphs. [Pg.9]

As mentioned in Sect. 2.2, phosphine oxides are air-stable compounds, making their use in the field of asymmetric catalysis convenient. Moreover, they present electronic properties very different from the corresponding free phosphines and thus may be employed in different types of enantioselective reactions, m-Chloroperbenzoic acid (m-CPBA) has been showed to be a powerful reagent for the stereospecific oxidation of enantiomerically pure P-chirogenic phos-phine-boranes [98], affording R,R)-97 from Ad-BisP 6 (Scheme 18) [99]. The synthesis of R,R)-98 and (S,S)-99, which possess a f-Bu substituent, differs from the precedent in that deboranation precedes oxidation with hydrogen peroxide to yield the corresponding enantiomerically pure diphosphine oxides (Scheme 18) [99]. [Pg.25]

Abstract In general, asymmetric catalysts are based on the combination of a chiral organic ligand and a metal ion. Here we show that future research should also focus on complexes in which the chirality resides only at the metal center, as the result of a given topology of coordination of achiral ligands to the metal ion. Here we make a brief presentation of the methods available for preparing such compounds as well as the very few examples of enantioselective reactions catalyzed by chiral-at-metal complexes. [Pg.271]

However, the reactions were not enantioselective ones, though the most important aspect of the biocatalysis reaction should be in the enantioselective reaction. We and KragF independently reported the first enantioselective lipase-catalyzed reaction in February-March 2001. Since lipase was anchored by the IL solvent and remained in it after the extraction work-up of the product, we succeeded in demonstrating that recyclable use of the lipase in the [bmim][PFg] solvent system was possible (Fig. 2). ... [Pg.4]


See other pages where Reaction enantioselectivity is mentioned: [Pg.361]    [Pg.247]    [Pg.129]    [Pg.163]    [Pg.168]    [Pg.172]    [Pg.175]    [Pg.181]    [Pg.186]    [Pg.187]    [Pg.285]    [Pg.296]    [Pg.260]    [Pg.260]    [Pg.286]    [Pg.55]    [Pg.735]    [Pg.241]    [Pg.168]    [Pg.22]    [Pg.1065]    [Pg.10]    [Pg.192]    [Pg.265]    [Pg.272]   
See also in sourсe #XX -- [ Pg.966 ]




SEARCH



Enantioselective reaction

© 2024 chempedia.info