Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective reactions iron-catalyzed

The major breakthrough in this field was achieved in 2003 by Legros and Bolm [164], who reported a highly enantioselective iron-catalyzed asymmetric sulfide oxidation. Optically active sulfoxides were obtained with up to 96% ee in good yields under very simple reaction conditions using Fe(acac)3 as precatalyst in combination with a Schiff base-type ligand (Table 3.9). Furthermore, inexpensive and safe 35% aqueous hydrogen peroxide served as terminal oxidant. [Pg.116]

Asymmetric catalysis with chiral ligands [82] is commonly considered to be advantageous instead of using chiral auxiliaries. Catalytic asymmetric Michael reactions are known [83], but not with iron as the catalytically active metal. Only two reports on iron catalyzed catalytic asymmetric Michael reaction with dipeptides [84] or diamino thioethers [85] exist, but the enantioselectivities were disappointing (18% ee and 10% ee, respectively). [Pg.233]

In addition to these commonplace substrates, only a few extraordinary educts have been used in iron-catalyzed DA reactions, such as the naphthoquinones investigated by Brimble and McEwen [75]. Whereas the application of FeCl3 and a chiral bisoxazoline ligand gave only a 25% yield and no chiral induction in the reaction of 2-acetyl-l,4-naphthoquinone with cyclopentadiene, the corresponding copper(II) triflate gave a 66% yield and moderate enantioselectivities (up to 50% ee). Another example was reported by Shibasaki s group in which the 2-alkoxy-l,3-butadiene 40... [Pg.258]

III.B.2), complexes with manganese, chromium, as well as second- and third-row transition metal ions (e.g., ruthenium) oxidation reactions with dioxygen alone or with other peroxides (e.g., ferf-butyl-peroxide) the stabilization and spectroscopic characterization of mononuclear superoxo, peroxo, and oxo complexes other catalytic processes (e.g., the iron-catalyzed aziridination), enantioselective reactions with chiral bispidine ligands and the iron oxidation chemistry continues to produce novel and exciting results. [Pg.690]

Legros, J. and Bohn, C. (2004). Highly Enantioselective Iron-Catalyzed Snlfide Oxidation with Aqueous Hydrogen Peroxide under Ssimple Reaction Conditions, Angew. Chem. Int. Ed., 43, pp. 4225-4228. [Pg.758]

Legros J, Bolm C. Highly enantioselective iron-catalyzed sulfide oxidation with aqueous hydrogen peroxide under simple reaction conditions. Angew. Chem. Int. Ed. 2004 43 4225-228. [Pg.1480]

In the nitrone cycloaddition reactions catalyzed by the l ,J -DBFOX/Ph transition metal complexes also, the diastereo- and enantioselectivities were found to depend upon the presence of MS 4 A [71]. Thus, both the selectivities were much lowered in the iron(II) or nickel(II) complex-catalyzed reactions without MS 4 A,... [Pg.270]

We employed malononitrile and l-crotonoyl-3,5-dimethylpyrazole as donor and acceptor molecules, respectively. We have found that this reaction at room temperature in chloroform can be effectively catalyzed by the J ,J -DBFOX/Ph-nick-el(II) and -zinc(II) complexes in the absence of Lewis bases leading to l-(4,4-dicya-no-3-methylbutanoyl)-3,5-dimethylpyrazole in a good chemical yield and enantio-selectivity (Scheme 7.47). However, copper(II), iron(II), and titanium complexes were not effective at all, either the catalytic activity or the enantioselectivity being not sufficient. With the J ,J -DBFOX/Ph-nickel(II) aqua complex in hand as the most reactive catalyst, we then investigated the double activation method by using this catalyst. [Pg.291]

An iron complex-catalyzed enantioselective hydrogenation was achieved by Morris and coworkers in 2008 (Scheme 13) [49]. Reaction of acetophenone under moderate hydrogen pressure at 50°C catalyzed iron complex 12 containing a tetradentate diimi-nodiphosphine ligand in the presence of BuOK afforded 1-phenylethanol with 40% conversion and 27% ee. [Pg.39]

Phosphine ligands based on the ferrocene backbone are very efficient in many palladium-catalyzed reactions, e.g., cross-coupling reactions,248 Heck reaction,249 amination reaction,250 and enantioselective synthesis.251 A particularly interesting example of an unusual coordination mode of the l,l -bis(diphenylphosphino)ferrocene (dppf) ligand has been reported. Dicationic palladium(II) complexes, such as [(dppf)Pd(PPh3)]2+[BF4 ]2, were shown to contain a palladium-iron bond.252,253 Palladium-iron bonds occur also in monocationic methyl and acylpalladium(II) complexes.254 A palladium-iron interaction is favored by bulky alkyl substituents on phosphorus and a lower electron density at palladium. [Pg.575]

In the wake of this report, many chiral iron(III)- and Mn(III)-porphyrin complexes have been synthesized and applied to the epoxidation of styrene derivatives [20]. Because these asymmetric epoxidations are discussed in the first edition of this book [21], the discussion on metalloporphyrin-catalyzed epoxidation here is limited to some recent examples. Most chiral metallopor-phyrins bear chiral auxi Maries such as the one derived from a-amino acid or binapthol. Differing from these complexes is complex 6, which has no chiral auxiliary but is endowed with facial chirality by introducing a strap and has been reported by Inoue et al. [20f]. Epoxidation of styrene by using only 6 as the catalyst shows low enantioselectivity, but the selectivity is remarkably enhanced when the reaction is performed in the presence of imidazole (Scheme 6B.11). This result can be explained by assuming that imidazole coordinates to the unhindered face of the complex and the reaction occur on the strapped face [20f. ... [Pg.295]

Enantioselective Diels-Alder reaction. Highly stereoselective Diels-Alder reactions can be achieved by use of the 4,4 -diphenylbis(oxazoline) 2b, prepared from (+)-phenylglycinol, as a chiral, bidentate ligand for iron salts. Thus reaction of Fel3 with 2b and I2 in CH3CN forms a complex presumed to be I-Fel3, which can catalyze reaction of 3-acryloyl-l,3-oxazolidin-2-one with cyclopentadiene at —50° to give the endo-adduct in 95% yield. The product is the 2R-enantiomer (82% ee). [Pg.40]

The complexes are isolated, characterized and used as chiral Lewis acids. Dissociation of the labile ligand liberates a single coordination site at the metal center. These Lewis acids catalyze enantioselective Diels-Alder reactions. For instance, reaction of methacrolein with cyclopentadiene in the presence of the cationic iron complex (L = acrolein) occurs with exo selectivity and an enantiomeric excess of the same order of magnitude as those obtained with the successful boron and copper catalysts (eq 3). ... [Pg.303]

Klin dig s cationic iron(II) complex 39a, derived from tra s-l,2-cyclopentanedi-ol, is a stable, isolable brown solid that possesses sufficient Lewis acidity to catalyze Diels-Alder reactions between unsaturated aldehydes and dienes [95]. The highest selectivities and yields were realized using bromoacrolein as the dienophile (Scheme 32). Further inspection reveals that dienes less reactive than cy-clopentadiene give cycloadducts in higher yield and enantioselectivity, a characteristic that is even more impressive when one considers that the endo and exo transition states produce enantiomeric products for isoprene and 2,3-dimethyl-butadiene. Cyclohexadiene may be used in the reaction with bromoacrolein to afford the cycloadduct in 80% de and >99% ee. In the case of cyclopentadiene. [Pg.1141]

While copper and iron Lewis acids are the most prominent late transition metal Diels-Alder catalysts, there are reports on the use of other chiral complexes derived from ruthenium [97,98],rhodium [99],andzinc [100] in enantioselective cycloaddition reactions, with variable levels of success. As a comparison study, the reactions of a zinc(II)-bis(oxazoline) catalyst 41 and zinc(II)-pyridylbis(ox-azoline) catalyst 42 were evaluated side-by-side with their copper(II) counterparts (Scheme 34) [101]. The study concluded that zinc(II) Lewis acids catalyzed a few cycloadditions selectively, but, in contrast to the [Cu(f-Bubox)](SbFg)2 complex 31b (Sect. 3.2.1), enantioselectivity was not maintained over a range of temperatures or substitution patterns on the dienophile. An X-ray crystal structure of [Zn(Ph-box)] (01)2 revealed a tetrahedral metal center the absolute stereochemistry of the adduct was consistent with the reaction from that geometry and opposite that obtained with Cu(II) complex 31. [Pg.1143]

Ricci and coworkers [64] studied oxazoline moiety fused with a cyclopenta[P]thio-phene as ligands on the copper-catalyzed enantioselective addition of Et2Zn to chalcone. The structure of the active Cu species was determined by ESI-MS. Evans and coworkers [65] studied C2-symmetric copper(II) complexes as chiral Lewis acids. The catalyst-substrate species were probed using electrospray ionization mass spectrometry. Comelles and coworkers studied Cu(II)-catalyzed Michael additions of P-dicarbonyl compounds to 2-butenone in neutral media [66]. ESI-MS studies suggested that copper enolates of the a-dicarbonyl formed in situ are the active nucleophilic species. Schwarz and coworkers investigated by ESI-MS iron enolates formed in solutions of iron(III) salts and [3-ketoesters [67]. Studying the mechanism of palladium complex-catalyzed enantioselective Mannich-type reactions, Fujii and coworkers characterized a novel binuclear palladium enolate complex as intermediate by ESI-MS [68]. [Pg.162]


See other pages where Enantioselective reactions iron-catalyzed is mentioned: [Pg.147]    [Pg.485]    [Pg.912]    [Pg.485]    [Pg.140]    [Pg.754]    [Pg.48]    [Pg.102]    [Pg.2211]    [Pg.323]    [Pg.692]    [Pg.682]    [Pg.738]    [Pg.46]    [Pg.286]    [Pg.74]    [Pg.300]    [Pg.696]    [Pg.925]    [Pg.34]    [Pg.44]    [Pg.123]    [Pg.242]    [Pg.838]    [Pg.545]    [Pg.143]    [Pg.286]    [Pg.365]    [Pg.534]    [Pg.55]    [Pg.62]    [Pg.79]    [Pg.25]    [Pg.55]   
See also in sourсe #XX -- [ Pg.68 , Pg.80 , Pg.81 ]




SEARCH



Enantioselective reaction

Enantioselectivity catalyzed reactions

Iron reaction

Iron-catalyzed reactions

© 2024 chempedia.info