Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enamine aldol reaction

The enamine geometry 32 is cmcial for the stereocontrol in organocatalytic aldehyde-aldehyde couplings amines of type 31 are convenient catalysts for enantioselective enamine-aldol reactions. Examples are shown in Scheme 24 [126,131,132,133,134,135]. [Pg.876]

V. Aldol Reactions of Heterocyclic Enamines and Their Importance for the... [Pg.253]

The aldol reactions of enamines may be formally considered to proceed via acyclic amino aldehyde or amino ketone forms, in spite of the fact that the cyclic enamine forms can also take part in aldol reactions. [Pg.295]

From a mechanistic standpoint, ammonia serves two functions 1) it behaves as a base to catalyze an aldol reaction between 2 equivalents of 31 to generate the corresponding enal 33, and 2) it is the source of nitrogen for the resultant pyridyl ring. This occurs through formation of enamine 34 with a third equivalent of 31. The Michael addition of 34 to 33 followed by cyclization gives rise to 32. [Pg.308]

The Robinson annulation is a two-step process that combines a Michael reaction with an intramolecular aldol reaction. It takes place between a nucleophilic donor, such as a /3-keto ester, an enamine, or a /3-diketone, and an a,/3-unsaturated ketone acceptor, such as 3-buten-2-one. The product is a substituted 2-cyclohexenone. [Pg.899]

Aldol reactions occur in many biological pathways, but are particularly important in carbohydrate metabolism, where enzymes called aldolases catalyze the addition of a ketone enolate ion to an aldehvde. Aldolases occur in all organisms and are of two types. Type 1 aldolases occur primarily in animals and higher plants type II aldolases occur primarily in fungi and bacteria. Both types catalyze the same kind of reaction, but type 1 aldolases operate place through an enamine, while type II aldolases require a metal ion (usually 7n2+) as Lewis acid and operate through an enolate ion. [Pg.901]

The Stork enamine reaction and the intramolecular aldol reaction can be carried out in sequence to allow the synthesis of cyclohexenones. For example, reaction of the pyrrolidine enamine of cyclohexanone with 3-buten-2-one. followed by enamine hydrolysis and base treatment, yields the product indicated. Write each step, and show the mechanism of each. [Pg.912]

The values of x = 0.5 and = 1 for the kinetic orders in acetone [1] and aldehyde [2] are not trae kinetic orders for this reaction. Rather, these values represent the power-law compromise for a catalytic reaction with a more complex catalytic rate law that corresponds to the proposed steady-state catalytic cycle shown in Scheme 50.3. In the generally accepted mechanism for the intermolecular direct aldol reaction, proline reacts with the ketone substrate to form an enamine, which then attacks the aldehyde substrate." A reaction exhibiting saturation kinetics in [1] and rate-limiting addition of [2] can show apparent power law kinetics with both x and y exhibiting orders between zero and one. [Pg.451]

The detailed mechanism of this enantioselective transformation remains under investigation.178 It is known that the acidic carboxylic group is crucial, and the cyclization is believed to occur via the enamine derived from the catalyst and the exocyclic ketone. A computational study suggested that the proton transfer occurs through a TS very similar to that described for the proline-catalyzed aldol reaction (see page 132).179... [Pg.139]

The TS proposed for these proline-catalyzed reactions is very similar to that for the proline-catalyzed aldol addition (see p. 132). In the case of imines, however, the aldehyde substituent is directed toward the enamine double bond because of the dominant steric effect of the (V-aryl substituent. This leads to formation of syn isomers, whereas the aldol reaction leads to anti isomers. This is the TS found to be the most stable by B3LYP/6-31G computations.199 The proton transfer is essentially complete at the TS. As with the aldol addition TS, the enamine is oriented anti to the proline carboxy group in the most stable TS. [Pg.144]

The reaction of enaminones with nitroalkenes gives a pentalenone system via the Michael addition and aldol reaction (Eq. 4.66).85a Linear a-keto enamines react with nitroalkenes to afford [3 + 2] carbocyclized products.8515... [Pg.93]

As predicted, l,2,3,4-13C-labeled acetone dicarboxylate (15) provided an intact three-carbon chain into lycopodine. It also helped to explain why two molecules of pelletierine (12) were not incorporated (Scheme 6.3) [12]. As before, lysine (6) is converted to piperideine (8) via a decarboxylation. Then a Mannich reaction of labeled 15 with 8 provides pelletierine 12. The other half of the molecule to be incorporated must be pelletierine-like (12-CC>2Na), still containing one of the carboxylates. An aldol reaction of the two pelletierine fragments and a series of transformations leads to phlegmarine 9. Oxidation of 9 involving imine formation between N-C5, isomerization to the enamine and then cyclization onto an imine (at N-C13), provides lycopodine 10. Phlegmarine 9 and lycopodine 10 are proposed as... [Pg.134]

Antibodies produced by this procedure were screened for their ability to react with the hapten to form the vinylogous amide 6, which has a convenient UV chromophore near 318nm, clear of the main protein absorption. Two antibodies selected in this way catalysed the expected aldol reaction of acetone with aldehyde 7 by way of the enamine 8 (Scheme 3) the remainder did not. These two effective aldolase mimics have been studied in some detail, and a crystal structure is available for (a Fab fragment of) one of them.126,281... [Pg.345]

Abstract Aldehydes obtained from olefins under hydroformylation conditions can be converted to more complex reaction products in one-pot reaction sequences. These involve heterofunctionalization of aldehydes to form acetals, aminals, imines and enamines, including reduction products of the latter in an overall hydroaminomethylation. Furthermore, numerous conversions of oxo aldehydes with additional C.C-bond formation are conceivable such as aldol reactions, allylations, carbonyl olefinations, ene reactions and electrophilic aromatic substitutions, including Fischer indole syntheses. [Pg.74]

The reaction is exactly analogous to the chemical aldol reaction (also shown), but it utilizes an enamine as the nucleophile, and it can thus be achieved under typical enzymic conditions, i.e. around neutrality and at room temperature. There is one subtle difference though, in that the enzyme produces an enamine from a primary amine. We have indicated that enamine formation is a property of secondary amines, whereas primary amines react with aldehydes and ketones to form imines (see Section 7.7.1). Thus, a further property of the enzyme is to help stabilize the enamine tautomer relative to the imine. [Pg.369]

The development of enamine catalysis parallels that of iminium catalysis (Scheme 3) [24], Like iminium catalysis, the concept took a long time to mature, and also required a key discovery - the discovery of intermolecular proline-catalyzed aldol reactions by List and coworkers in 2000 [23] - to set the field in motion. The timeline of historical developments of enamine catalysis is outlined in Scheme 4. [Pg.31]

Momiyama and Yamamoto have recently demonstrated that acid cocatalysts can even influence the outcome of enamine-mediated reactions [63]. In their studies of the acid-catalyzed O- and A-nitroso aldol reaction, they found that the nature of the acid catalyst dictates the regioselectivity of the reaction between preformed enamine species A carboxylic acid catalyst promoted the 0-nitroso aldol reaction whereas a hydrogen bonding catalyst catalyzed the formation of an A-adduct, both in high enantioselectivities(Scheme 10). [Pg.38]

The delicateness of the aldol protocol has perhaps been one of the factors why enamine catalysis of the aldol reaction did not emerge nntil the 1970s. The Hajos-Parrish-Eder-Sauer-Wiechert reaction [30] (Scheme 16) was an important early example of an intramolecular enamine-catalyzed aldol reaction. However, it was not nntil 2000 when List, Barbas and Lemer demonstrated that the same reaction can also be performed in an intermolecular fashion, using proline as a simple enamine catalyst [26]. [Pg.43]

Since 2000, remarkable advances in the ntility of the enamine-catalyzed aldol reaction have been made [83]. A massive effort has been devoted to the development of more effective variants of prohne [13, 26, 64, 68, 84-174]. In addition, alternative amino acids and peptides bearing primary amino groups [175-184] as... [Pg.43]

Typical starting materials, catalysts, and products of the enamine-catalyzed aldol reaction are summarized in Scheme 17. In proline-catalyzed aldol reactions, enantioselectivities are good to excellent with selected cyclic ketones, such as cyclohexanone and 4-thianone, but generally lower with acetone. Hindered aldehyde acceptors, such as isobutyraldehyde and pivalaldehyde, afford high enantioselectivities even with acetone. In general, the reactions are anti selective, but there are aheady a number of examples of syn selective enamine aldol processes [200, 201] (Schemes 17 and 18, see below). However, syn selective aldol reactions are still rare, especially with cychc ketones. [Pg.44]


See other pages where Enamine aldol reaction is mentioned: [Pg.790]    [Pg.7]    [Pg.7]    [Pg.790]    [Pg.7]    [Pg.7]    [Pg.295]    [Pg.270]    [Pg.93]    [Pg.901]    [Pg.1147]    [Pg.1221]    [Pg.77]    [Pg.210]    [Pg.255]    [Pg.363]    [Pg.369]    [Pg.526]    [Pg.327]    [Pg.327]    [Pg.327]    [Pg.5]    [Pg.32]    [Pg.33]    [Pg.39]    [Pg.40]    [Pg.42]   
See also in sourсe #XX -- [ Pg.217 , Pg.218 , Pg.219 , Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 ]




SEARCH



Aldol Reactions in Enamine Catalysis

Aldol reactions of enamines

Enamine reaction

Enamines nitroso-aldol reaction

Intermolecular Aldol Reactions in Enamine Catalysis

Intramolecular Aldol Reactions Using Enamine Catalysis

© 2024 chempedia.info