Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emission spectrum decay

Fig. 3.6 (a) Decay scheme of and (b) ideal emission spectrum of Co diffused into rhodium metal. The nuclear levels in (a) are labeled with spin quantum numbers and lifetime. The dashed arrow up indicates the generation of Co by the reaction of Mn with accelerated deuterons (d in Y out). Line widths in (b) are arbitrarily set to be equal. The relative line intensities in (%) are given with respect to the 122-keV y-line. The weak line at 22 keV, marked with ( ), is an X-ray fluorescence line from rhodium and is specific for the actual source matrix... [Pg.34]

Suppose we have a pH indicator like Phenol Red whose absorption spectrum is pH-sensitivewith pKa = 7.6 (Figure 10.12). Phenol Red displays two distinct absorption spectra for protonated form (pH 2.5) and for unprotonated form (pH 10.4). One of the possible donors is an Eosin which displays an emission spectrum that overlaps with the absorption spectra of the protonated and unprotonated forms (acceptors) of Phenol Red (Figure 10.12). The critical distances for energy transfer (R0),(32) calculated from spectral properties of Eosin and Phenol Red, are 28.3 and 52.5 A for protonated and unprotonated forms of Phenol Red, respectively. For randomly distributed acceptors in three dimensions with no diffusion, the donor decay is... [Pg.322]

IR luminescence lines with relatively short decay times connected with Nd are very strong in the fluorite emission spectrum (Fig. 4.11c,d). Besides that, UV and violet hnes with a short decay time appear, which are ascribed to Nd (Fig. 4.11a,b). [Pg.141]

The line at approximately 600 nm has a long decay time of 1 ms. It is the strongest one in the titanite luminescence spectrum under 266, 355 and 532 nm (Fig. 4.33b,c), but its relative intensity is much lower under 514 nm excitation (Gaft et al. 2003b). It appears that from all lines found in titanite luminescence spectra only two weaker ones at 563 and 646 nm have similar kinetic and excitation characteristics with the line at 600 nm. Such a combination of luminescence lines is very typical for Sm ". Thus the emission spectrum... [Pg.143]

The lines at 686 and 693 nm with a long decay time of approximately 1 ms in the titanite emission spectrum are not correlated with any other lines and bands (Fig. 4.34). Such lines are very typical for Cr in a high field coordination and may be connected with such a center. The broad luminescence band appears peaking at 765, which may be ascribed to Cr + in a weak field coordination. The band at 765 nm has distinct dips at 749, 762, 793, 798, 804 and 820 nm. Comparison with the titanite absorption spectrum (Fig. 5.19) demonstrates that those lines exactly coincide with the absorption spectrum of Nd (Bakhtin and Gorobets 1992). Cr is a good energy sensitizer, because it has broad, allowed absorption bands with a broad emission spectrum, which overlaps the absorption bands of the lasing ion (Nd " ", Ho " ). [Pg.179]

Luminescence of in synthetic alkaline earth sulfates is well known (Folk-erts et al. 1995). In this study, CaS04 Pb shows an emission band with a maximum at 235 nm at 300 K, while the excitation maximum is at 220 nm. The decay curve of the emission is single exponential with a decay time of 570 ps at 4.2 K. The emission spectrum of BaS04 Pb demonstrates a broad band peaking at 340 nm with an excitation maximum at 220 nm, while in SrS04 Pb the luminescence band has a maximum at 380 nm. hi natural barite and anhydrite samples we detected several narrow UV bands, which may be connected with Pb emission, but for confident conclusion additional study is needed. In any case, Pb participation in natural sulfates liuninescence has to be taken into consideration. [Pg.215]

Weller24 has estimated enthalpies of exciplex formation from the energy separation vg, — i>5 ax of the molecular 0"-0 and exciplex fluorescence maximum using the appropriate form of Eq. (27) with ER assumed to have the value found for pyrene despite the doubtful validity of this approximation the values listed for AHa in Table VI are sufficiently low to permit exciplex dissociation during its radiative lifetime and the total emission spectrum of these systems may be expected to vary with temperature in the manner described above for one-component systems. This has recently been confirmed by Knibbe, Rehm, and Weller30 who obtain the enthalpies and entropies of photoassociation of the donor-acceptor pairs listed in Table XI. From a detailed analysis of the fluorescence decay curves for the perylene-diethyl-aniline system in benzene, Ware and Richter34 find that... [Pg.187]

The compound bis-(4,4 -dimethylaminophenyl)-sulfone (DMAPS) and related compounds show multiple fluorescences in polar solvents due to excited state charge transfer (Rettig and Chandross [144]). Su and Simon [84,85] have examined the intramolecular electron transfer reaction in DMAPS, in alcohol solution over the temperature range from — 50°C to + 30°C. They observe that the decay of the local excited state is nonexponential and significantly faster than the longitudinal relaxation time of the solvent. In addition, they observed that the emission spectrum of the TICT state... [Pg.59]

Figure 8 shows a pair of typical time-resolved fluorescence decay traces for 100 / M pyrene in supercritical CO2 (Tr = 1.02 pr = 1.17). Note that the ordinate is logarithmic. The upper and lower panels show results for selective observation in the monomer (400 +. 10 nm) and excimer (460 + 10 nm) regions of the pyrene emission spectrum. Several interesting features are apparent from these traces. First, both decay processes are not single exponential. Second, the excimer emission has a significant contribution from a species that "grows in" between 30 - 75 ns this is a result of the excimer taking time to form (i.e., k in Figure 1). Third, the fits between the experimental data and the model shown in Figure 1 are good. Detailed analysis of these decay traces (10,11,21-26) yields the entire ensemble of photophysical kinetic parameters for the pyrene excimer in supercritical C02. Figure 8 shows a pair of typical time-resolved fluorescence decay traces for 100 / M pyrene in supercritical CO2 (Tr = 1.02 pr = 1.17). Note that the ordinate is logarithmic. The upper and lower panels show results for selective observation in the monomer (400 +. 10 nm) and excimer (460 + 10 nm) regions of the pyrene emission spectrum. Several interesting features are apparent from these traces. First, both decay processes are not single exponential. Second, the excimer emission has a significant contribution from a species that "grows in" between 30 - 75 ns this is a result of the excimer taking time to form (i.e., k in Figure 1). Third, the fits between the experimental data and the model shown in Figure 1 are good. Detailed analysis of these decay traces (10,11,21-26) yields the entire ensemble of photophysical kinetic parameters for the pyrene excimer in supercritical C02.
Time-resolved emission spectra were reconstructed from a set of multifrequency phase and modulation traces acquired across the emission spectrum (37). The multifrequency phase and modulation data were modeled with the help of a commercially available global analysis software package (Globals Unlimited). The model which offered the best fits to the data with the least number of fitting parameters was a series of bi-exponential decays in which the individual fluorescence lifetimes were linked across the emission spectrum and the pre-exponential terms were allowed to vary. [Pg.100]

The time-resolved emission spectra were reconstructed from the fluorescence decay kinetics at a series of emission wavelengths, and the steady-state emission spectrum as described in the Theory section (37). Figure 4 shows a typical set of time-resolved emission spectra for PRODAN in a binary supercritical fluid composed of CO2 and 1.57 mol% CH3OH (T = 45 °C P = 81.4 bar). Clearly, the emission spectrum red shifts following excitation indicating that the local solvent environment is becoming more polar during the excited-state lifetime. We attribute this red shift to the reorientation of cosolvent molecules about excited-state PRODAN. [Pg.102]

In 1894 Ramsay removed oxygen, nitrogen, water and carbon dioxide from a sample of air and was left with a gas 19 times heavier than hydrogen, very unreactive and with an unknown emission spectrum. He called this gas as argon. In 1895 he discovered helium as a decay product of uranium and matched it to the emission spectrum of an unknown element in the sun that was discovered in 1868. He went on to discover neon, krypton and xenon, and realized these represented a new group in the periodic table. [Pg.30]

In this limiting case the time-dependence of the emission spectrum is determined by the overall probability Pm to find chromophore m in the excited state while the frequency distribution of the emitted photons is determined by the Fourier-transformed standard trace expression for the radiative decay of an excited molecular state (see, for example, [40] Rme describes vibrational equilibrium in the excited electronic state). [Pg.51]

Fig. 11 Normalized time and frequency resolved emission spectrum of the CC P4. A 6 ps time averaging has been carried out to mimic the apparatus function of the single photon detector. Radiative and non-radiative decay has been accounted for by a common chromophore excited-state life time of 5 ns. Fig. 11 Normalized time and frequency resolved emission spectrum of the CC P4. A 6 ps time averaging has been carried out to mimic the apparatus function of the single photon detector. Radiative and non-radiative decay has been accounted for by a common chromophore excited-state life time of 5 ns.
Photodissociation combines aspects of both molecular spectroscopy and molecular scattering. The spectroscopist is essentially interested in the first step of Equation (1.1), i.e., the absorption spectrum. In the past six decades or so methods of ever increasing sophistication have been developed in order to infer molecular geometries from structures in the absorption or emission spectrum (Herzberg 1967), whereas the fate of the fragments, i.e., the final state distribution is of less relevance in spectroscopy. The decay of the excited complex is considered only inasfar as the widths of the individual absorption lines reflect the finite lifetime in the excited state and therefore the decay rate of the excited molecule. [Pg.7]

Therefore, the emitting species M and M L can in principle be identified from a decomposition of the total emission spectrum, and thus TRES experiments are mainly based on the evaluation of emission spectra rather than luminescence decays. However, a detailed analysis of the decays allows one to derive important information that cannot be obtained through the emission spectra, as will be explained below. In the frame of model 2, it is easily shown that the expressions of the relative contributions of the two species to the global emission spectrum contain only one unknown parameter, Afapp, while the equivalent expressions under the frame of model 1 are much more complex. This raises the question as to whether model 2 can be considered a reasonable approximation of the more complex scheme 1. This issue can be discussed qualitatively on the basis of three distinct cases of model 1, depending on the importance of photochemical reactions. [Pg.503]


See other pages where Emission spectrum decay is mentioned: [Pg.1978]    [Pg.371]    [Pg.170]    [Pg.310]    [Pg.5]    [Pg.197]    [Pg.164]    [Pg.308]    [Pg.166]    [Pg.332]    [Pg.302]    [Pg.393]    [Pg.258]    [Pg.90]    [Pg.32]    [Pg.56]    [Pg.59]    [Pg.132]    [Pg.215]    [Pg.200]    [Pg.6]    [Pg.200]    [Pg.381]    [Pg.501]    [Pg.272]    [Pg.4]    [Pg.55]    [Pg.376]    [Pg.177]    [Pg.28]    [Pg.97]    [Pg.67]    [Pg.20]    [Pg.331]   
See also in sourсe #XX -- [ Pg.3 , Pg.107 ]




SEARCH



Decay emissive

Emission decay

Spectrum emission

© 2024 chempedia.info