Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elution determination

Fig. 4.13 Scheme of on-line sorption system for preconcentration of liquid samples prior to introduction into a liquid chromatograph. (A) Preconcentration stage (B) elution-determination stage. (Reproduced from [8] with permission of Elsevier). [Pg.100]

The enantiomeric excess of 3.10c has been determined by HPLC analysis using a Daicel Chiracel OD column and eluting with a 60 / 1 (v/v) hexane(HPLC-grade) / 2-propanol(p.a.) mixture. At a flow of 1 ml per minute the rentention times for the different isomers of 3.10c were 6.3 min. (exo, major enantiomer) 7.1 min. (exo, minor enantiomer) 7.7 min. (endo, major enantiomer) 10.7 min. (endo, minor enantiomer). [Pg.103]

A solute s capacity factor can be determined from a chromatogram by measuring the column s void time, f, and the solute s retention time, (see Figure 12.7). The mobile phase s average linear velocity, m, is equal to the length of the column, L, divided by the time required to elute a nonretained solute. [Pg.551]

Methanol, which elutes at 4.69 min, is included as a neutral species to indicate the electroosmotic flow. When using standard solutions of each vitamin, CZE peaks are found at 3.41 min, 4.69 min, 6.31 min, and 8.31 min. Examine the structures and p/Ca information in Figure 12.47, and determine the order in which the four B vitamins elute. [Pg.607]

To use GPC for molecular weight determination, we must measure the volume of solvent that passes through the column before a polymer of particular molecular weight is eluted. This quantity is called the retention volume Vj. Figure 9.14 shows schematically the relationship between M and Vj it is an... [Pg.643]

Acrolein is produced according to the specifications in Table 3. Acetaldehyde and acetone are the principal carbonyl impurities in freshly distilled acrolein. Acrolein dimer accumulates at 0.50% in 30 days at 25°C. Analysis by two gas chromatographic methods with thermal conductivity detectors can determine all significant impurities in acrolein. The analysis with Porapak Q, 175—300 p.m (50—80 mesh), programmed from 60 to 250°C at 10°C/min, does not separate acetone, propionaldehyde, and propylene oxide from acrolein. These separations are made with 20% Tergitol E-35 on 250—350 p.m (45—60 mesh) Chromosorb W, kept at 40°C until acrolein elutes and then programmed rapidly to 190°C to elute the remaining components. [Pg.124]

Another method that determines both ascorbic acid and dehydroascorbic acid first reduced the dehydroascorbic acid to ascorbic acid and then retains the ascorbic acid on an anionic Sephadex column (82). The ascorbic acid is oxidized on the column to dehyroascorbic acid by -benzoquinone, which simultaneously elutes the dehydroascorbic acid. The dehydroascorbic acid is reacted with 4-iiitro-l,2-phenylenediainine and absorbance of the resulting yeUow solution produced is measured at 375 nm. [Pg.17]

A high performance Hquid chromotography (hplc) method to determine citric acid and other organic acids has been developed (46). The method is an isocratic system using sulfuric acid to elute organic acids onto a specific hplc column. The method is sensitive for citric acid down to ppm levels and is capable of quantifying citric acid in clear aqueous systems. [Pg.185]

It is important to note that simulated distillation does not always separate hydrocarbons in the order of their boiling point. For example, high-boihng multiple-ring-type compounds may be eluted earher than normal paraffins (used as the calibration standard) of the same boiling point. Gas chromatography is also used in the ASTM D 2427 test method to determine quantitatively ethane through pentane hydrocarbons. [Pg.1326]

I have carried out widespread studies on the application of a sensitive and selective preconcentration method for the determination of trace a mounts of nickel by atomic absorption spectrometry. The method is based on soi ption of Cu(II) ions on natural Analcime Zeolit column modified with a new Schiff base 5-((4-hexaoxyphenylazo)-N-(n-hexyl-aminophenyl)) Salicylaldimine and then eluted with O.IM EDTA and determination by EAAS. Various parameters such as the effect of pH, flow rate, type and minimum amount of stripping and the effects of various cationic interferences on the recovery of ions were studied in the present work. [Pg.51]

The results of sorptional properties investigation have shown the possibility of SN-SiO, application for Pb +, ClC+, Zn +, Cd + selective preconcentration. The preconcentrated Cu, Pb, Cd, Zn ions at pH 6-7 were eluted by acid and determined by atomic-absoi ption method. [Pg.274]

In the recent years intensive studies related to modification of silica with organic compounds of various chemical nature have being conducted in order to concentrate selectively metal ions from solutions and then to perform their analytical determination directly in the sorbent phase, or after that, to elute with appropriate reagents in solution. [Pg.277]

Sodium trimetaphosphate was used as an eluting agent for the removal of heavy metals such as Pb, Cd, Co, Cu, Fe, Ni, Zn and Cr from aqueous solutions. Distribution coefficients of these elements have been determined regarding five different concentrations of sodium trimeta phosphate (3T0 M 5T0 M 0.01 M 0.05 M 0.1 M) on this resin. By considering these distribution coefficients, the separation of heavy metals has been performed using a concentration gradient of 3T0 - 5T0 M sodium trimetaphosphate. Qualitative and quantitative determinations were realized by ICP-AES. [Pg.289]

BBT solution on unmodified sorbents of different nature was studied. Silica gel Merck 60 (SG) was chosen for further investigations. BBT immobilization on SG was realized by adsoi ption from chloroform-hexane solution (1 10) in batch mode. The isotherm of BBT adsoi ption can be referred to H3-type. Interaction of Co(II), Cu(II), Cd(II), Ni(II), Zn(II) ions with immobilized BBT has been studied in batch mode as a function of pH of solution, time of phase contact and concentration of metals in solution. In the presence of sodium citrate absorbance (at X = 620 nm) of immobilized BBT grows with the increase of Cd(II) concentration in solution. No interference was observed from Zn(II), Pb(II), Cu(II), Ni(II), Co(II) and macrocomponents of natural waters. This was assumed as a basis of soi ption-spectroscopic and visual test determination of Cd(II). Heavy metals eluted from BBT-SG easily and quantitatively with a small volume of HNO -ethanol mixture. This became a basis of soi ption-atomic-absoi ption determination of the total concentration of heavy metals in natural objects. [Pg.292]

A liquid chromatography-mass spectrometry (LC-MS) method that can quantitatively analyze urinar y normal and modified nucleosides in less than 30 min with a good resolution and sufficient sensitivity has been developed. Nineteen kinds of normal and modified nucleosides were determined in urine samples from 10 healthy persons and 18 breast cancer patients. Compounds were separ ated on a reverse phase Kromasil C18 column (2.1 mm I.D.) by isocratic elution mode using 20 mg/1 ammonium acetate - acetonitrile (97 3 % v/v) at 200 p.l/min. A higher sensitivity was obtained in positive atmospheric pressure chemical ionization mode APCI(-i-). [Pg.351]


See other pages where Elution determination is mentioned: [Pg.433]    [Pg.80]    [Pg.524]    [Pg.225]    [Pg.163]    [Pg.163]    [Pg.433]    [Pg.80]    [Pg.524]    [Pg.225]    [Pg.163]    [Pg.163]    [Pg.188]    [Pg.14]    [Pg.363]    [Pg.573]    [Pg.1105]    [Pg.1116]    [Pg.565]    [Pg.575]    [Pg.592]    [Pg.605]    [Pg.664]    [Pg.242]    [Pg.253]    [Pg.261]    [Pg.50]    [Pg.134]    [Pg.287]    [Pg.25]    [Pg.354]    [Pg.439]    [Pg.244]    [Pg.248]    [Pg.258]    [Pg.105]    [Pg.2063]    [Pg.2063]    [Pg.243]    [Pg.312]    [Pg.358]    [Pg.447]   
See also in sourсe #XX -- [ Pg.456 ]




SEARCH



© 2024 chempedia.info