Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination in synthesis

Cycloaddition with subsequent silyl group elimination in synthesis of heterocycles 85YGK862. [Pg.282]

Regioselectivity of C—C double bond formation can also be achieved in the reductiv or oxidative elimination of two functional groups from adjacent carbon atoms. Well estab llshed methods in synthesis include the reductive cleavage of cyclic thionocarbonates derivec from glycols (E.J. Corey, 1968 C W. Hartmann, 1972), the reduction of epoxides with Zn/Nal or of dihalides with metals, organometallic compounds, or Nal/acetone (seep.lS6f), and the oxidative decarboxylation of 1,2-dicarboxylic acids (C.A. Grob, 1958 S. Masamune, 1966 R.A. Sheldon, 1972) or their r-butyl peresters (E.N. Cain, 1969). [Pg.142]

Allylic sulfones undergo Pd-catalyzed elimination. The synthesis of an a,ft-unsaturated ketone by the elimination of the allylic sulfone group in 503 is an examplc[339]. [Pg.358]

With a regioselectivity opposite to that of the Zaitsev rule the Hofmann ehmma tion IS sometimes used in synthesis to prepare alkenes not accessible by dehydrohalo genation of alkyl halides This application decreased in importance once the Wittig reac tion (Section 17 12) became established as a synthetic method Similarly most of the analytical applications of Hofmann elimination have been replaced by spectroscopic methods... [Pg.939]

Thionyl imide, HNSO, is a thermally unstable gas, which polymerizes readily. It can be prepared by the reaction of thionyl chloride with ammonia in the gas phase. Organic derivatives RNSO have higher thermal stability, especially when R = Ar. The typical synthesis involves the reaction of a primary amine or, preferably, a silylated amine with thionyl chloride. A recent example is the preparation of FcNSO (Fc = ferrocenyl) shown in Eq. 9.8. In common with other thionylimines, FcNSO readily undergoes SO2 elimination in the presence of a base, e.g., KO Bu, to give the corresponding sulfur diimide FcNSNFc. [Pg.168]

Desulfonation reaction (reductive and oxidative desulfonation, nucleophilic substitution, elimination, and SO2 extrusion) in synthesis and transformations of heterocycles 99T10547. [Pg.208]

A variation of the general method for the synthesis of 2-amino-selenazoles is to avoid the use of the free a-halogenocarbonyl compound and in its place react the corresponding ketone and iodine with selenourea.This procedure is also taken from thiazole chemistry. By contrast with thiourea, the reaction with selenourea needs a longer reaction time and the work up of the reaction mixture is somewhat more difficult. Usually an excess of the ketone is used. In the preparation of 2-amino-4-( n-nitrophenyl)selenazole, a very high yield, calculated on the amount of iodine used, was obtained. To explain this peculiar result, the oxidative action of the nitro group was invoked. This liberates free iodine from some of the hydrogen iodide eliminated in the condensation reaction, and the free iodine then re-enters into the reaction. [Pg.348]

A similar elimination in which the tin is attacked by fluoride anions (cf. the reaction of silanes with F ) has been used179 to synthesize terminal methylene compounds as in equation (75). An analogous reaction sequence using a trimethylsilyl group in place of the trialkyltin group has been published by Hsiao and Shechter180 as part of a synthesis of substituted 1,3-butadienes. [Pg.955]

For a review of eliminations in which NO2 is a leaving group, see Ono, N. in Feuer Nielsen Nitro Compounds Recent Advances in Synthesis, and Chemistry, VCH NY, 1990, p. 1, See... [Pg.1362]

Scheme 2.20 gives some examples of the application of the Julia olefination in synthesis. Entry 1 demonstrates the reductive elimination conditions. This reaction gave a good E.Z ratio under the conditions shown. Entry 2 is an example of the use of the modified reaction that gave a good E.Z ratio in the synthesis of vinyl chlorides. Entry 3 uses the tetrazole version of the reaction in the synthesis of a long-chain ester. Entries 4 to 7 illustrate the use of modified conditions for the synthesis of polyfunctional molecules. [Pg.175]

The oxygen nucleophiles that are of primary interest in synthesis are the hydroxide ion (or water), alkoxide ions, and carboxylate anions, which lead, respectively, to alcohols, ethers, and esters. Since each of these nucleophiles can also act as a base, reaction conditions are selected to favor substitution over elimination. Usually, a given alcohol is more easily obtained than the corresponding halide so the halide-to-alcohol transformation is not used extensively for synthesis. The hydrolysis of benzyl halides to the corresponding alcohols proceeds in good yield. This can be a useful synthetic transformation because benzyl halides are available either by side chain halogenation or by the chloromethylation reaction (Section 11.1.3). [Pg.226]

Selenoxides are even more reactive than sulfoxides toward (3-elimination. In fact, many selenoxides react spontaneously when generated at room temperature. Synthetic procedures based on selenoxide eliminations usually involve synthesis of the corresponding selenide followed by oxidation and in situ elimination. We have already discussed examples of these procedures in Section 4.3.2, where the conversion of ketones and esters to their a, (3-unsaturated derivatives is considered. Selenides can... [Pg.598]

The addition of dichlorocarbene, generated from chloroform, to alkenes gives dichlorocyclopropanes. The procedures based on lithiated halogen compounds have been less generally used in synthesis. Section D of Scheme 10.9 gives a few examples of addition reactions of carbenes generated by a-elimination. [Pg.927]

Related Polymer Systems and Synthetic Methods. Figure 12A shows a hypothetical synthesis of poly (p-phenylene methide) (PPM) from polybenzyl by redox-induced elimination. In principle, it should be possible to accomplish this experimentally under similar chemical and electrochemical redox conditions as those used here for the related polythiophenes. The electronic properties of PPM have recently been theoretically calculated by Boudreaux et al (16), including bandgap (1.17 eV) bandwidth (0.44 eV) ionization potential (4.2 eV) electron affinity (3.03 eV) oxidation potential (-0.20 vs SCE) reduction potential (-1.37 eV vs SCE). PPM has recently been synthesized and doped to a semiconductor (24). [Pg.453]

The reaction of 5-[2-(iV,./V-dimethylamino)ethyl]-l,2,4-oxadiazole with methyl iodide forms the quaternary ammonium salt 170 (Scheme 22), which undergoes elimination in the presence of base (diisopropylethylamine (DIEA), TEA, l,8-diazabicyclo[4.3.0]undec-7-ene, etc.) to form an intermediate 5-vinyl-l,2,4-oxadiazole 171, which undergoes in situ Michael addition with nucleophiles to furnish the Michael adducts 172. As an example, also shown in Scheme 22, 3-hydroxy-pyrrolidine allows the synthesis of compound 172a in 97% yield. Mesylation followed by deprotonation of the 1,2,4-oxadiazole methylene at C-5 enables Sn2 displacement of the mesylate to give the 5-azabicycloheptyl derivative 173, which is a potent muscarinic agonist <1996JOC3228>. [Pg.266]

Based on a /rarcr-acetoxypalladation of the triple bond, Lu has developed a highly enantioselective (up to 87% ee) synthesis of 7-butyrolactones with Pd(n) catalysis (Scheme 73).280 Following the initial /ra/w-acetoxy-palladation, a plausible mechanism for this sequence involves an intramolecular carbopalladation of the pendant olefin, and deacetoxypalladation instead of the common /3-hydride elimination in the final step. [Pg.335]


See other pages where Elimination in synthesis is mentioned: [Pg.87]    [Pg.771]    [Pg.1011]    [Pg.1020]    [Pg.761]    [Pg.1011]    [Pg.1020]    [Pg.44]    [Pg.399]    [Pg.87]    [Pg.771]    [Pg.1011]    [Pg.1020]    [Pg.761]    [Pg.1011]    [Pg.1020]    [Pg.44]    [Pg.399]    [Pg.51]    [Pg.135]    [Pg.127]    [Pg.140]    [Pg.157]    [Pg.825]    [Pg.116]    [Pg.261]    [Pg.607]    [Pg.654]    [Pg.695]    [Pg.120]    [Pg.22]    [Pg.148]    [Pg.45]    [Pg.368]    [Pg.135]    [Pg.513]    [Pg.550]   
See also in sourсe #XX -- [ Pg.14 , Pg.312 ]

See also in sourсe #XX -- [ Pg.9 , Pg.327 ]




SEARCH



Elimination reactions in synthesis

In eliminations

Substitution and Elimination Reactions in Synthesis

Synthesis 3-elimination

© 2024 chempedia.info