Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electropolymerization surfaces

Wettability of the Electropolymerized Surfaces — Influence of Electrosynthesis Conditions... [Pg.386]

For the bottom-up approach, the rough surface can be created by polymerization of a monomer via plasma-enhanced CVD technique or electropolymerization. Surface morphology is sensitive to the polymerization condition. Usually, the roughness is random with a hierarchical particulate or fibrous structure. When a hydrophobic monomer is used, the surface will be superhydrophobic after polymerization. Figure 4.2 la shows a 10 x 10 pm AFM image of a PEC VD polymer film polymerized from perfluorooctyl acrylate. The surface comprises nanospherical particles and exhibits very high water repeUency with 0a/0r at 168°/165° [67]. Similarly, electropolymerization of 3,4-ethyleneoxythiathiophene derivatives also yield superhydropho-... [Pg.77]

Type 2 tlie inliibiting species takes part in tlie redox reaction, i.e. it is able to react at eitlier catliodic or anodic surface sites to electroplate, precipitate or electropolymerize. Depending on its activation potential, tlie inliibitor affects tlie polarization curve by lowering tlie anodic or catliodic Tafel slope. [Pg.2730]

The enzyme can be immobilized on the electrode by several techniques (53). The simplest method, first used in 1962, is to trap an enzyme solution between the electrode surface and a semipermeable membrane. Another technique is to immobilize the enzyme in a polymer gel such as polyacrylamide which is coated on the electrode surface. Very thin-membrane films can be obtained by electropolymerization techniques (49,54,55) using polypyrrole, polyindole, or polyphenylenediamine films, among others. These thin films (qv) offer the advantage of improved diffusion of substrate and product that... [Pg.102]

Galvanostatic, potentiostatic as well as potentiodynamic techniques can be used to electropolymerize suitable monomeric species and form the corresponding film on the electrode. Provided that the maximum formation potentials for all three techniques are the same, the resulting porperties of the films will be broadly similar. The potentiodynamic experiment in particular provides useful information on the growth rate of conducting polymers. The increase in current with each cycle of a multisweep CV is a direct measure of the increase in the surface of the redoxactive polymer and, hence, a suitable measure of relative growth rates (Fig. 5). [Pg.15]

Besides synthesis, current basic research on conducting polymers is concentrated on structural analysis. Structural parameters — e.g. regularity and homogeneity of chain structures, but also chain length — play an important role in our understanding of the properties of such materials. Research on electropolymerized polymers has concentrated on polypyrrole and polythiophene in particular and, more recently, on polyaniline as well, while of the chemically produced materials polyacetylene stih attracts greatest interest. Spectroscopic methods have proved particularly suitable for characterizing structural properties These comprise surface techniques such as XPS, AES or ATR, on the one hand, and the usual methods of structural analysis, such as NMR, ESR and X-ray diffraction techniques, on the other hand. [Pg.16]

Electropolymerization is also an attractive method for the preparation of modified electrodes. In this case it is necessary that the forming film is conductive or permeable for supporting electrolyte and substrates. Film formation of nonelectroactive polymers can proceed until diffusion of electroactive species to the electrode surface becomes negligible. Thus, a variety of nonconducting thin films have been obtained by electrochemical oxidation of aromatic phenols and amines Some of these polymers have ligand properties and can be made electroactive by subsequent inincorporation of transition metal ions... [Pg.56]

Vinyl substituted bipyridine complexes of ruthenium 9 and osmium 10 can be electropolymerized directly onto electrode surfaces The polymerization is initiated and controlled by stepping or cycling the electrode potential between positive and negative values and it is more successful when the number of vinyl groups in the complexes is increased, as in 77 A series of new vinyl substituted terpyridinyl ligands have recently been synthesized whose iron, cobalt and ruthenium complexes 72 are also susceptible to electropolymerization... [Pg.56]

The [Co(terpy)2]+ ion (terpy = 2,2 6, 2"-terpyridine) has been found to catalyze the reduction of C02 when the divalent precursor is immobilized on electrode surfaces. The vinyl-substituted terpy analog was electropolymerized to give a film that reduced the overpotential for C02 reduction in DMF and MeCN by more than 1V.104 The activity of this surface-confined species was superior to that of the complexes in solution.105 Similarly, in water, the [Co(terpy)2]2+ ion immobilized and reduced in situ within a Nafion film also catalyzes the reduction of C02106 and H+ ions.107... [Pg.9]

N. Diab and W. Schuhmann, Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Electrochim. Acta 47, 265-273 (2001). [Pg.47]

The possibility for electropolymerization on the top surface of Prussian blue films was probably first shown in [126] describing the high oxidizing ability of Berlin green, the fully oxidized form of Prussian blue. Afterwards non-conducting polymers were synthesized on the top surface of transition metal hexacyanoferrate-modified electrodes for immobilization of the enzyme [127],... [Pg.444]

The surface EXAFS and near edge structure of electropolymerized films of [M(v-bpy)3]+2 (v-bpy is 4-vinyl-4 -methyl,-2,2 -bipyrdine and M = Ru,... [Pg.216]

Several approaches have been undertaken to construct redox active polymermodified electrodes containing such rhodium complexes as mediators. Beley [70] and Cosnier [71] used the electropolymerization of pyrrole-linked rhodium complexes for their fixation at the electrode surface. An effective system for the formation of 1,4-NADH from NAD+ applied a poly-Rh(terpy-py)2 + (terpy = terpyridine py = pyrrole) modified reticulated vitreous carbon electrode [70]. In the presence of liver alcohol dehydrogenase as production enzyme, cyclohexanone was transformed to cyclohexanol with a turnover number of 113 in 31 h. However, the current efficiency was rather small. The films which are obtained by electropolymerization of the pyrrole-linked rhodium complexes do not swell. Therefore, the reaction between the substrate, for example NAD+, and the reduced redox catalyst mostly takes place at the film/solution interface. To obtain a water-swellable film, which allows the easy penetration of the substrate into the film and thus renders the reaction layer larger, we used a different approach. Water-soluble copolymers of substituted vinylbipyridine rhodium complexes with N-vinylpyrrolidone, like 11 and 12, were synthesized chemically and then fixed to the surface of a graphite electrode by /-irradiation. The polymer films obtained swell very well in aqueous... [Pg.112]

Electrochemistry is one of the most promising areas in the research of conducting polymers. Thus, the method of choice for preparing conducting polymers, with the exception of PA, is the anodic oxidation of suitable monomeric species such as pyrrole [3], thiophene [4], or aniline [5]. Several aspects of electrosynthesis are of relevance for electrochemists. First, there is the deposition process of the polymers at the electrode surface, which involves nucleation-and-growth steps [6]. Second, to analyze these phenomena correctly, one has to know the mechanism of electropolymerization [7, 8]. And thirdly, there is the problem of the optimization of the mechanical, electrical, and optical material properties produced by the special parameters of electropolymerization. [Pg.607]

Despite the vast quantity of data on electropolymerization, relatively little is known about the processes involved in the deposition of oligomers (polymers) on the electrode, that is, the heterogeneous phase transition. Research - voltammetric, potential, and current step experiments - has concentrated largely on the induction stage of film formation of PPy [6, 51], PTh [21, 52], and PANI [53]. In all these studies, it has been overlooked that electropolymerization is not comparable with the electrocrystallization of inorganic metallic phases and oxide films [54]. Thus, two-or three-dimensional growth mechanisms have been postulated on the basis that the initial deposition steps involve one- or two-electron transfers of a soluted species and the subsequent formation of ad-molecules at the electrode surface, which may form clusters and nuclei through surface diffusion. These phenomena are still unresolved. [Pg.617]

Examples of surface-immobilized mediators are electropolymerized azines for electro-oxidation of The extreme form of this approach is formation of biocatalytic monolayer, comprising a surface-bound mediator species that is itself bound to a single enzyme molecule. Katz et al. report a complete cell based on novel architecture at both electrodes (Figure 7). On the anode side, the FAD center of glucose oxidase is removed from the enzyme shell and covalently attached to a pyrroloquinoline quinone (PQQ) mediator species previously immobilized on a gold surface. The GOx apoenzyme (enzyme with active center removed) is reintroduced in solution and selectively binds to FAD, resulting in a PQQ-... [Pg.638]

Most suitable for electrically conducting materials such as carbon fibers, the electrochemical processes involve deposition of polymer coatings on the fiber surface through electrodeposition or electropolymerization techniques. The major advantage of these processes is that a uniform layer of controlled thickness and variable polymer structure and properties can be obtained by controlling the current and the solution concentration. [Pg.294]


See other pages where Electropolymerization surfaces is mentioned: [Pg.39]    [Pg.118]    [Pg.124]    [Pg.126]    [Pg.128]    [Pg.173]    [Pg.185]    [Pg.15]    [Pg.491]    [Pg.584]    [Pg.40]    [Pg.57]    [Pg.59]    [Pg.83]    [Pg.128]    [Pg.149]    [Pg.154]    [Pg.319]    [Pg.713]    [Pg.218]    [Pg.230]    [Pg.409]    [Pg.101]    [Pg.617]    [Pg.63]    [Pg.101]    [Pg.248]    [Pg.638]    [Pg.181]    [Pg.559]    [Pg.597]    [Pg.109]    [Pg.152]    [Pg.152]   


SEARCH



Electrode surfaces electropolymerization technique

Electropolymerization

Electropolymerization solution-surface

Electropolymerizing

© 2024 chempedia.info